Abstract:
A semiconductor device, in accordance with the present invention, includes a doped semiconductor substrate (102) wherein the doping of the substrate has a first conductivity and a device region (110) formed near a surface of the substrate. The device region includes at least one device well. A buried well (104) is formed in the substrate below the device region. The buried well is doped with dopants having a second conductivity. A trench region (124) surrounds the device region and extends below the surface of the substrate to at least the buried well such that the device region is isolated from other portions of the substrate by the buried well and the trench region.
Abstract:
A DRAM cell and method of fabrication are provided that eliminate critical photolithography fabrication steps by merging stacked capacitor formation with electrical contacts. The a single lithography step can be used to form the electrical contacts because the stacked capacitors are co-planar with the bit lines and the stacked capacitors are located in the insulating material provided between the bit lines. Unlike conventional capacitor-over-bit line (COB) DRAM cells, this capacitor-beside-bit line DRAM cell eliminates the need to dedicate contacts to the capacitor, making it possible to achieve higher capacitance with lower global topography.
Abstract:
A method of forming a trench can be used in the fabrication of dynamic random access memory (DRAM) cells. In one aspect, a first layer of a first material (e.g., polysilicon) (104) is formed over a semiconductor region (e.g., a silicon substrate) (100). The first layer is patterned to remove portions of the first material. A second material (e.g., oxide) (112, 120) can then be deposited to fill the portions where the first material was removed. After removing the remaining portions of the first layer of first material, a trench (122) can be etched in the semiconductor region. The trench would be substantially aligned to the second material.
Abstract:
A photomask for lithographic processing, in accordance with the present invention, includes a plurality of features (104) for providing an image pattern. The features are arranged in a column (106) on a mask substrate (101). Each feature is dimensioned to provide an individual image separate from all other images provided by the photomask when exposed to light. A line feature (110) is formed on the mask substrate and extends between and intersects with each of the plurality of features in the column. The line feature extends a length of images produced by the plurality of features arranged in the column when exposed to light wherein the images produced by each of the plurality of features and the line feature remain separate from each other.
Abstract:
A method of forming a trench can be used in the fabrication of dynamic random access memory (DRAM) cells. In one aspect, a first layer of a first material (e.g., polysilicon) (104) is formed over a semiconductor region (e.g., a silicon substrate) (100). The first layer is patterned to remove portions of the first material. A second material (e.g., oxide) (112, 120) can then be deposited to fill the portions where the first material was removed. After removing the remaining portions of the first layer of first material, a trench (122) can be etched in the semiconductor region. The trench would be substantially aligned to the second material.
Abstract:
In an overlay measurement mark comprising an inner box (2) and an outer box (4) located at a predetermined area on a mask through which patterns are formed on a semiconductor device, the improvement of an overlay mark that extends the overlay measurement range comprising: in-focused marks means printed at an optimal or ideal focal plane level from an illumination source, and de-focused marks means located at a different focus level from the optimal focal plane to provide image placement shift of the de-focused marks larger than that of the in-focused marks means to enable measurement of the shift of de-focused marks that are not attributable to a mechanical alignment error to be determined with greater accuracy.
Abstract:
A DRAM cell and method of fabrication are provided that eliminate critical photolithography fabrication steps by merging stacked capacitor formation with electrical contacts. The a single lithography step can be used to form the electrical contacts (28) because the stacked capacitors (46,48,50) are co-planar with the bit lines (36) and the stacked capacitors are located in the insulating material provided between the bit lines. Unlike conventional capacitor-over-bit line (COB) DRAM cells, this capacitor-beside-bit line DRAM cell eliminates the need to dedicate contacts to the capacitor, making it possible to achieve higher capacitance with lower global topography.
Abstract:
A dynamic random access memory is formed in a silicon chip in arrays of clusters, each of four cells in a single active area. Each active area is cross-shaped with vertical trenches at the four ends of the two crossbars. The central region of the active area where the two crossbars intersect serves as the common base region of the four transistors of the cluster. The top of the base region serves as a common drain for the four transistors and each transistor has a separate channel along the wall of its associated vertical trench that provides its storage capacitor. Each cluster includes a common bit line and four separate word-line contacts.
Abstract:
A method for exposing a workpiece in a dual exposure step-and-repeat process starts by forming a design for a reticle mask. Deconstruct the design for the reticle mask by removing a set(s) of the features that are juxtaposed to form hollow polygonally-shaped clusters with a gap in the center. Form unexposed resist on the workpiece. Load the workpiece and the reticle mask into the stepper. Expose the workpiece through the reticle mask. Reposition the workpiece by a nanostep. Then expose the workpiece through the reticle mask after the repositioning. Test whether the plural exposure process is finished. If the result of the test is NO the process loops back to repeat some of the above steps. Otherwise the process has been completed. An overlay mark is produced by plural exposures of a single mark. A dead zone is provided surrounding an array region in which printing occurs subsequent to exposure in an original exposure. Alternatively, the workpiece can be fully exposed first by stepping a series of full steps, then going back to the starting position, making a nanostep to reset the starting position and re-exposing from the reset starting position in the same way with full steps from the nanostepped position. The clusters may be in the shape of a hexagon or a diamond.
Abstract:
An apparatus (100) for patterning the surface of a semiconductor wafer (130). A stage (148) is coupled to a motor (150) that is adapted to move the stage (148) and a semiconductor wafer (130) in a horizontal direction at a first speed A. A mask (140) is disposed above the semiconductor wafer (130), the mask (140) being coupled to a motor (142) that is adapted to move the mask (140) in a horizontal direction at a second speed B. The ratio of the first and second speeds is different than the magnification factor, which may be other than 1:1 if a lens (120) is used. The mask (140) and the wafer (130) may be moved in the same horizontal direction simultaneously during the exposure process at different speeds B and A, respectively, to provide a magnification or demagnification of the mask (140) pattern onto the wafer (130) surface.