Abstract:
In a substrate-level assembly (22), a device substrate (20) of semiconductor material has a top face (20a) and houses a first integrated device (1; 16), in particular provided with a buried cavity (3), formed within the device substrate (20), and with a membrane (4), suspended over the buried cavity (3) in the proximity of the top face (20a). A capping substrate (21) is coupled to the device substrate (20) above the top face (20a) so as to cover the first integrated device (1; 16), in such a manner that a first empty space (25) is provided above the membrane (4). Electrical-contact elements (28a, 28b) electrically connect the integrated device (1; 16) with the outside of the substrate-level assembly (22). In one embodiment, the device substrate (20) integrates at least a further integrated device (1', 10) provided with a respective membrane (4'); and a further empty space (25'), fluidically isolated from the first empty space (25), is provided over the respective membrane (4') of the further integrated device (1', 10).
Abstract:
Electronic device (1, 1a, 1b, 1c, 1d, 1e) which comprises: a substrate (2) provided with at least one passing opening (5), a MEMS device (7) with function of differential sensor provided with a first and a second surface (9, 10) and of the type comprising at least one portion (11) sensitive to chemical and/or physical variations of fluids present in correspondence with a first and a second opposed active surface (11a, 11b) thereof, the first surface (9) of the MEMS device (7) leaving the first active surface (11a) exposed and the second surface (10) being provided with a further opening (12) which exposes said second opposed active surface (11b), the electronic device (1, 1d, 1e) being characterised in that the first surface (9) of the MEMS device (7) faces the substrate (2) and is spaced therefrom by a predetermined distance, the sensitive portion (11) being aligned to the passing opening (5) of the substrate (2), and in that it also comprises: a protective package (14, 14a, 14b), which incorporates at least partially the MEMS device (7) and the substrate (2) so as to leave the first and second opposed active surfaces (11a, 11b) exposed respectively through the passing opening (5) of the substrate (2) and the further opening (12) of the second surface (10).
Abstract:
A process for manufacturing a semiconductor wafer integrating electronic devices and a structure for electromagnetic decoupling are disclosed. The method includes providing a wafer of semiconductor material having a substrate; forming a plurality of first mutually adjacent trenches, open on a first face of the wafer, which have a depth and a width and define walls); by thermal oxidation, completely oxidizing the walls and filling at least partially the first trenches, so as to form an insulating structure of dielectric material; and removing one portion of the substrate comprised between the insulating structure and a second face of the wafer, opposite to the first face of the wafer.