Abstract:
A transmissive sampling module is provided, which is adapted to a spectrometer main body. The transmissive sampling module includes a light source assembly and a support base. The light source assembly is directly connected to the support base. The support base includes a tube body and at least one fixing member. The tube body surrounds an accommodating groove, and an extending direction of the tube body is not parallel to an optical path of the light source assembly, and the tube body includes a transparent portion, and the optical path of the light source assembly passes through the transparent portion and the accommodating groove. The at least one fixing member is disposed on the tube body and is adjustably protruded out of an inner surface of the tube body. A transmissive spectrometer is also provided.
Abstract:
A control apparatus includes a slit plate including a plurality of rectangular slits with different widths. The control apparatus also includes an acquisition unit which acquires an incident spectrum from the rectangular slit. The apparatus also includes a slit selecting unit which acquires a half value wavelength of the incident spectrum on the basis of the incident spectrum, and performs a selection of one of the plurality of rectangular slits on the basis of the half value wavelength.
Abstract:
A hyperspectral imaging system and a method are described herein for providing a hyperspectral image of an area of a remote object. In one aspect, the hyperspectral imaging system includes a fore optic with optics for acquiring and projecting an image from a remote object, a scannable slit mechanism with a plurality of slits for receiving the projected image, where the projected image simultaneously illuminates two or more of the plurality of slits, a spectrometer for receiving and dispersing images passing through the two or more simultaneously-illuminated slits, and a two-dimensional image sensor for recording images received from the spectrometer, where the images received from different slits are recorded on different sets of detection elements of the two-dimensional image sensor.
Abstract:
An optical system for a multidetector array spectrophotometer which includes multiple light sources for emitting light of selected wavelength ranges and means for selectively transmitting the selected wavelength ranges of light to respective slits of a multi-slit spectrogrpah for multiple wavelength range detection. The spectrograph has two or more slits which direct the selected wavelength ranges of the light spectra to fall upon a dispersive and focusing system which collects light from each slit, disperses the light by wavelength and refocuses the light at the positions of a single set of detectors.
Abstract:
A gonio-spectroradiometer and a measuring method thereof. The gonio-spectroradiometer includes a light source rotating on a light source axis, a first integrating sphere revolving around the light source with respect to a revolving axis perpendicular to the light source axis with a fixed radius and including an entrance formed in a direction to see the light source, a light intensity modulator adapted to modulate light intensity of light received through the first integrating sphere according to the rotation amount of the revolving axis, and a detector adapted to measure output light of the light intensity modulator at each wavelength.
Abstract:
A hyperspectral imaging system and a method are described herein for providing a hyperspectral image of an area of a remote object. In one aspect, the hyperspectral imaging system includes a fore optic with optics for acquiring and projecting an image from a remote object, a scannable slit mechanism with a plurality of slits for receiving the projected image, where the projected image simultaneously illuminates two or more of the plurality of slits, a spectrometer for receiving and dispersing images passing through the two or more simultaneously-illuminated slits, and a two-dimensional image sensor for recording images received from the spectrometer, where the images received from different slits are recorded on different sets of detection elements of the two-dimensional image sensor.
Abstract:
A hyperspectral imaging system and a method are described herein for providing a hyperspectral image of an area of a remote object (e.g., scene of interest). In one aspect, the hyperspectral imaging system includes at least one optic, a rotatable disk (which has at least one spiral slit formed therein), a spectrometer, a two-dimensional image sensor, and a controller. In another aspect, the hyperspectral imaging system includes at least one optic, a rotatable disk (which has multiple straight slits formed therein), a spectrometer, a two-dimensional image sensor, and a controller. In yet another aspect, the hyperspectral imaging system includes at least one optic, a rotatable drum (which has a plurality of slits formed on the outer surface thereof and a fold mirror located therein), a spectrometer, a two-dimensional image sensor, and a controller.
Abstract:
Incident slits and exit slits are provided separately on corresponding optical axes incident simultaneously on a spectroscope from a sample atomizing unit. A mechanism for changing the widths of the respective incident slits and exiting slits is provided such that the slit widths optimal to the respective elements to be measured are set on the corresponding optical axes to thereby realize high sensitivity analysis of all the elements to be measured simultaneously.
Abstract:
A spectrometry apparatus (1) according to an embodiment includes a detection object lens that signal light from a sample S enters, a slit (41) through which the signal light passes, a wavelength dispersive element that disperses the signal light having passed the slit (41) in accordance with a wavelength, an optical detector (50) that detects the signal light that has been subjected to wavelength dispersion in the wavelength dispersive element, scanning means for scanning a detection region of the optical detector (50) in the sample, a processing unit (51) that generates a spectral image, based on a detection signal of the optical detector (50), and an illumination optical system (10) that illuminates the sample from a side of the detection object lens.
Abstract:
An optical module includes a micro spectrometer. The micro spectrometer includes an optical crystal, a lens, and a photosensitive assembly. The optical crystal is configured to receive detection light and covert the detection light into interference light. The optical crystal is surrounded by a sleeve, the sleeve configured to fix a position of the optical crystal. The lens is configured for receiving the interference light and focusing the interference light. The photosensitive assembly is configured for imaging the interference light into an interference image. The optical module further comprises a controller. The controller is electrically connected to the photosensitive assembly, and the controller is used to convert the interference image into light wavelength signals and light intensity signals.