Objective lens system for fast scanning large FOV

    公开(公告)号:US11837431B2

    公开(公告)日:2023-12-05

    申请号:US16018008

    申请日:2018-06-25

    Abstract: The device includes a beam source for generating an electron beam, a beam guiding tube passed through an objective lens, an objective lens for generating a magnetic field in the vicinity of the specimen to focus the particles of the particle beam on the specimen, a control electrode having a potential for providing a retarding field to the particle beam near the specimen to reduce the energy of the particle beam when the beam collides with the specimen, a deflection system including a plurality of deflection units situated along the optical axis for deflecting the particle beam to allow scanning on the specimen with large area, at least one of the deflection units located in the retarding field of the beam, the remainder of the deflection units located within the central bore of the objective lens, and a detection unit to capture secondary electron (SE) and backscattered electrons (BSE).

    ELECTRODE STRUCTURE FOR GUIDING A CHARGED PARTICLE BEAM

    公开(公告)号:US20230170177A1

    公开(公告)日:2023-06-01

    申请号:US17922093

    申请日:2021-04-27

    Abstract: An electrode structure for guiding and, for example, for splitting a beam of charged particles, for example an electron beam, along a longitudinal path has multipole electrode arrangements that are spaced apart from one another along the longitudinal path and that have DC voltage electrodes. The electrode arrangements are configured to generate static multipole fields centered around the path in transverse planes oriented perpendicular to the longitudinal path, wherein the field strengths of the static multipole fields in the transverse planes each have a local minimum at the location of the path and increase as the distance from the location of the path increases. Field directions of the static multipole fields vary periodically with a period length along the path so that the particles propagating along the path are subjected to an inhomogeneous alternating electric field due to their intrinsic movement and experience a transverse return force towards the longitudinal path on average over time.

    ABERRATION MEASUREMENT IN A CHARGED PARTICLE MICROSCOPE

    公开(公告)号:US20180254168A1

    公开(公告)日:2018-09-06

    申请号:US15448445

    申请日:2017-03-02

    Applicant: FEI Company

    Abstract: A method of operating a charged particle microscope comprising the following steps: Providing a specimen on a specimen holder; Using a source to produce a beam of charged particles; Passing said beam through an illuminator comprising: A source lens, with an associated particle-optical axis; A condenser aperture, which is disposed between the source lens and specimen and is configured to define a footprint of said beam upon the specimen; Irradiating the specimen with the beam emerging from said illuminator; Using a detector to detect radiation emanating from the specimen in response to said irradiation, and producing an associated image, specifically comprising the following steps: Choosing a set of emission angles from said source; For each emission angle in said set, selecting a corresponding sub-beam that emits from the source at that emission angle, and storing a test image formed by that sub-beam, thereby compiling a set of test images corresponding to said set of emission angles; Analyzing said set of test images to evaluate illuminator aberrations generated prior to said condenser aperture.

Patent Agency Ranking