Abstract:
A chip package includes a circuit board, a chip and an underfill. A solder resist layer formed on the circuit board is modified in edge profile so as to reduce required amount of the underfill. The fewer underfill is still enough to be filled between the circuit board and the chip, and still can cover circuit lines that are not covered by the solder resist layer to protect the circuit lines from oxidation.
Abstract:
A restriction device for preventing deformation of restriction plate of reel is disclosed. The restriction device includes a first circular restrictor, a second circular restrictor, a block member and a first push member. A clamping space exists between the first and second circular restrictors mounted on a shaft and is configured to accommodate a reel mounted on the shaft. The second circular restrictor is able to be moved on the shaft in an axial direction, the block member is fixed on the shaft and the first push member is placed between the block member and the second circular restrictor. The first push member is configured to apply a force to push the second circular restrictor toward the first circular restrictor to press a first restriction plate of the reel such that the deformation of the first restriction plate is prevented.
Abstract:
A wafer cassette for storing wafers comprises a case and a plurality of carriers for carrying the wafers. Each of the carriers is pivotally and movably mounted to a pivot of the case, and can selectively accommodate in or depart from an accommodation space of the case for benefit of the wafer loading or unloading.
Abstract:
A flexible substrate includes a circuit board, a flexible heat-dissipating structure and an adhesive. The circuit board has a substrate and a circuit layer formed on a top surface of the substrate, and the flexible heat-dissipating structure has a flexible supporting plate and a flexible heat-dissipating metal layer formed on a surface of the flexible supporting plate. The flexible heat-dissipating metal layer of the flexible heat-dissipating structure is connected with a bottom surface of the substrate by the adhesive. The circuit layer and the flexible heat-dissipating metal layer are made of same material.
Abstract:
A flexible substrate includes a circuit board, a flexible heat-dissipating structure and an adhesive. The circuit board has a substrate and a circuit layer formed on a top surface of the substrate, and the flexible heat-dissipating structure has a flexible supporting plate and a flexible heat-dissipating metal layer formed on a surface of the flexible supporting plate. The flexible heat-dissipating metal layer of the flexible heat-dissipating structure is connected with a bottom surface of the substrate by the adhesive. The circuit layer and the flexible heat-dissipating metal layer are made of same material.
Abstract:
A semiconductor package structure having hollow chamber includes a bottom substrate having a bottom baseboard and a bottom metal layer formed on a disposing area of the bottom baseboard, a connection layer formed on the bottom metal layer, and a top substrate. The bottom metal layer has at least one corner having a first and a second outer lateral surface, and an outer connection surface. A first extension line is formed from a first extreme point of the first outer lateral surface, and a second extension line is formed from a second extreme point of the second outer lateral surface. A first exposing area of the bottom baseboard is formed by connecting the first and second extreme points and a cross point of the first and second extreme points. The top substrate connects to the connection layer to form a hollow chamber between the top and bottom substrates.
Abstract:
A flexible substrate includes a circuit board, a flexible heat-dissipating structure and an adhesive. The circuit board has a substrate and a circuit layer formed on a top surface of the substrate, and the flexible heat-dissipating structure has a flexible supporting plate and a flexible heat-dissipating metal layer formed on a surface of the flexible supporting plate. The flexible heat-dissipating metal layer of the flexible heat-dissipating structure is connected with a bottom surface of the substrate by the adhesive. The circuit layer and the flexible heat-dissipating metal layer are made of same material.
Abstract:
A flexible substrate includes a base layer, a metallic layer, a solder mask layer and an identifying code, the metallic layer is disposed at a first surface of the base layer, the metallic layer comprises a plurality of traces and at least one bottom block used for defining marked position, wherein the traces and the at least one bottom block are covered with the solder mask layer, wherein above the perpendicular direction of the at least one bottom block of the metallic layer, a pre-marked area is defined on an exposing surface of the solder mask layer and by an outlined edge of the at least one bottom block, and the identifying code is formed within the pre-marked area of the solder mask layer.
Abstract:
A trace structure of fine-pitch pattern includes a connection portion, a first conductive wire portion and a second conductive wire portion, the first conductive wire portion comprises a first section and a second section connected to the first section, the first section connects to the connection portion, the second conductive wire portion comprises a third section and a fourth section connected to the third section, the third section connects to the connection portion, wherein an etching space closed on three sides is formed by the connection portion, the third section and the first section, a first spacing is defined between the third section and the first section, a second spacing is defined between the fourth section and the second section, wherein the first spacing is larger than the second spacing so as to make an metal layer within the etching space completely removed to avoid metal layer residues.
Abstract:
A semiconductor manufacturing method includes providing a carrier; forming a first photoresist layer; forming plural core portions; removing the first photoresist layer; forming a second photoresist layer; forming a plurality of connection portions, each of the plurality of connection portions includes a first connection layer and a second connection layer and connects to each of the core portions to form a hybrid bump, wherein each of the first connection layers comprises a base portion, a projecting portion and an accommodating space, each base portion comprises an upper surface, each projecting portion is protruded to the upper surface and located on top of each core portion, each accommodating space is located outside each projecting portion, the second connection layers cover the projecting portions and the upper surfaces, and the accommodating spaces are filled by the second connection layers; removing the second photoresist layer to reveal the hybrid bumps.