Abstract:
Methods and apparatus to couple a device, such as, for example, a surface mount device, with a substrate, such as, for example, a printed circuit, are disclosed. An apparatus, according to one aspect, may include a substrate, a plurality of terminals coupled with the substrate, a conductive bonding material coupled with the plurality of terminals, an electronic device coupled with the conductive bonding material, and a holder that is coupled with the substrate to hold the electronic device. A method, according to one aspect, may include coupling a holder with a substrate such that terminals of the substrate are included in an opening of the holder, mounting an electronic device over the terminals with a conductive bonding material disposed therebetween, heating the conductive bonding material to its melting point, and cooling the conductive bonding material.
Abstract:
In one embodiment, the present invention provides a process for manufacturing a multilayer flexible wiring board, which allows individual layers of wiring boards to be precisely positioned and to be readily stacked. A mask for exposure is prepared in which a plurality of pattern holes corresponding to individual layers of wiring boards of a multilayer flexible wiring board are arranged in the direction perpendicular to the transporting direction P of substrate. This mask for exposure is used to form a plurality of wiring patterns corresponding to individual layers of wiring boards of a multilayer flexible wiring board on the same sheet-like substrate.
Abstract:
Provided is a method of forming a circuit board including (a) providing a first conductive sheet; (b) selectively removing one or more portions of the first conductive sheet to form a first panel having a first circuit board that is coupled to a disposable part of the first panel by at least one tab that extends from an edge of the first circuit board to an edge of the disposable part of the first panel; (c) applying an insulating coating to the first circuit board so that at least each edge of the first circuit board is covered thereby; and (d) separating the first circuit board from the disposable part in a manner whereupon at least part of the tab remains attached to the first circuit board and includes an exposed edge of the conductive sheet of the first circuit board. Circuit boards formed by the method are also provided.
Abstract:
A passive electrical article includes a first electrically conductive substrate having a major surface and a second electrically conductive substrate having a major surface. The major surface of the second substrate faces the major surface of the first substrate. An electrically resistive layer is on at least one of the major surface of the first substrate and the major surface of the second substrate. An electrically insulative layer is between the first and second substrates and in contact with the electrically resistive layer. The insulative layer is a polymer having a thickness ranging from about 1 μm to about 20 μm. The insulative layer has a substantially constant thickness.
Abstract:
The disclosure relates to methods and solutions for precisely and rapidly etching a polyimide resin layer. Etching solutions of the present invention include 3–65% by weight of a diol containing 3 to 6 carbon atoms or a triol containing 4 to 6 carbon atoms, 10–55 % by weight of an alkali compound and water in an amount of 0.75–3.0 times the amount of the alkali compound, and can be used at 65° C. or more to rapidly etch a polyimide resin layer having an imidation degree of 50–98 % without unfavorably affecting the working atmosphere. Even if the resin layer is completely imidated after etching, the etching pattern of the resulting resin layer is not deformed with a decreased contamination by impurity ions as compared with those obtained using conventional etching solutions.
Abstract:
A circuit board includes an electrically conductive sheet having an insulative coating surrounding the conductive sheet, with a surface of the insulative coating around an edge of the conductive sheet having an arcuate or rounded shape. At least one electrical conductor is conformally deposited on at least the rounded insulative coating around the edge of the conductive sheet and defined via photolithographic and metallization techniques. Each electrical conductor on the insulative coating thereon around the edge of the conductive sheet conforms to the arcuate or rounded shape of the insulative coating and, therefore, has an arcuate or rounded shape.
Abstract:
Methods and apparatus to couple a device, such as, for example, a surface mount device, with a substrate, such as, for example, a printed circuit, are disclosed. An apparatus, according to one aspect, may include a substrate, a plurality of terminals coupled with the substrate, a conductive bonding material coupled with the plurality of terminals, an electronic device coupled with the conductive bonding material, and a holder that is coupled with the substrate to hold the electronic device. A method, according to one aspect, may include coupling a holder with a substrate such that terminals of the substrate are included in an opening of the holder, mounting an electronic device over the terminals with a conductive bonding material disposed therebetween, heating the conductive bonding material to its melting point, and cooling the conductive bonding material.
Abstract:
An electrical assembly which includes a circuitized substrate comprised of an organic dielectric material having a first electrically conductive pattern thereon. At least part of the dielectric layer and pattern form the first, base portion of an organic memory device, the remaining portion being a second, polymer layer formed over the part of the pattern and a second conductive circuit formed on the polymer layer. A second dielectric layer if formed over the second conductive circuit and first circuit pattern to enclose the organic memory device. The device is electrically coupled to a first electrical component through the second dielectric layer and this first electrical component is electrically coupled to a second electrical component. A method of making the electrical assembly is also provided, as is an information handling system adapted for using one or more such electrical assemblies as part thereof.
Abstract:
A circuitized substrate comprised of at least one dielectric material having an electrically conductive pattern thereon. At least part of the pattern is used as the first layer of an organic memory device which further includes at least a second dielectric layer over the pattern and a second pattern aligned with respect to the lower part for achieving several points of contact to thus form the device. The substrate is preferably combined with other dielectric-circuit layered assemblies to form a multilayered substrate on which can be positioned discrete electronic components (e.g., a logic chip) coupled to the internal memory device to work in combination therewith. An electrical assembly capable of using the substrate is also provided, as is an information handling system adapted for using one or more such electrical assemblies as part thereof.
Abstract:
A semiconductor chip is provided that is highly packageable and particularly well suited for mounting on a circuit board having a curved surface. The semiconductor chip comprises a warpage control film that controls the warpage of a substrate.