Abstract:
A filet F is added to a portion constituting a corner portion C equal to or smaller than 90null in a crossing portion X of wiring patterns 58b, 58c and 58d, and a wiring pattern 58 is formed. Since the filet F is added, the wiring patterns are not made thin and are not disconnected in the crossing portion X. Further, since there is no stress concentrated to the crossing portion X, disconnection is not caused in the wiring patterns and no air bubbles are left between the crossing portion X of the wiring patterns and an interlayer resin insulating layer so that reliability of a printed wiring board is improved.
Abstract:
A printed wiring board having assembled thereon a grid array type package, a multi-terminal device with many terminals arranged in matrix, is provided, through first signal connection holes, signal lines, and second connection holes, with many numbers of lands divided into plural blocks, being arranged in matrix on a first layer to connect each terminal of the multi-terminal device correspondingly, signal line patterns connected with many lands, and drawn out in the same direction per block, and first signal patterns from lands positioned on the innermost line of many lands. Then, the wiring patterns of the signal lines are drawn out regularly from many lands formed in matrix on the assembling surface of the grid array type package to make it easier for the printed wiring board to effectuate wiring connections without making them complicated or increasing the number of layers of the printed wiring board. Also, with the provision of ground patterns that surround signal lines, it is made possible to reduce unwanted radiant, as well as to suppress the occurrence of malfunctions of electronic equipment due to reflections and ground bounces.
Abstract:
Parallel surfaces are interfacially mechanically bonded and optionally electrically, and/or thermally connected using an interposer fabricated from a flexible laminates, such as flex PWB. The bond/connection points for the device made on one side of the interposer are displaced in the X and Y axis from the bond/connection points on the other or obverse side for the interposer and the board. The optional electrical/thermal connection through the interposer is made through one or more traces and vias in the flex board.
Abstract:
A wiring layer on which X-directional signal lines 20 to 22 are arranged is formed on a multilayer board. Rectangular power-source conductive patterns 10c are arranged each in which via holes 12c are formed longitudinally or in the wiring direction of the X-directional signal lines 20 to 22. The area (hatched with broken lines) acts as a wiring channel for the X-directional signal line 22.
Abstract:
A method of making a low inductance conductive via in a laminated substrate by providing a first conductive layer. A first dielectric layer is formed on the first conductive layer. A second conductive layer is formed on the first dielectric layer. A first conductive path is formed in the first conductive layer extending along a first route between a first node and a second node. A first conductive blind-via is connected to the first conductive path at the second node, with the first-blind via being formed in the first dielectric layer at the second node. Lastly, a second conductive path is formed in the second conductive layer that is connected to the first blind via. The second conductive path extends between a third node and the first blind via along a second route. The second route corresponds identically to at least a portion of the first route.
Abstract:
This disclosure describes an Interconnect Stress Testing (IST) system and a printed wiring board test coupon which is used with the IST system. The system includes a computer device and a cabinet which is used for mounting the test coupon as well as housing a number of the other components that make up the system. During a pre-cycling phase, the system determines the correct current that should be passed through the coupon in order to heat it to a predetermined temperature. After that test current value is determined the system actually stress tests the coupon by passing the determined test current through the coupon. It does so for a selected number of cycles, and monitors resistance changes in the coupon during testing while recording test data. This disclosure also describes the test coupon, which is designed to uniformly dissipate the heat created during stress cycling.
Abstract:
A method for producing aligned passages through substrate materials, in which the projection of the inlet and outlet openings does not coincide, uses displaced application of etching windows on opposite sides and corresponding pronounced under-etching of these windows. By applying displaced etching windows on both sides of the substrate and through-etching the substrate through these windows, `oblique` passages are obtained through the substrate. By a suitable location of the windows it is also possible to produce branched passages with more than one outlet opening.
Abstract:
A multilayer interconnection substrate having, e.g., first to third power interconnections provided with first to third interconnection layers. A first insulating layer is provided between the first and second interconnection layers, and a second insulating layer is provided between the second and third interconnection layers. A plurality of first via holes are provided at said first insulating layer and connect the first and second power interconnections and a plurality of second via holes are provided at said second insulating layer with their position being shifted from that of the first via holes and connect the second and third power interconnection.
Abstract:
A package for surface-mounted components according to the present invention includes a first board which includes contact portions formed on a front face side thereof for mounting the components to be surface-mounted thereon, and first through-holes electrically contiguous with the contact portions; a second board includes conductor pins provided on a rear face side thereof for establishing continuity with another board and second through-holes electrically contiguous with the conductor pins; and a conductor layer interposed between the first and second boards by which the first through-holes in the first board side and the second through-holes in the second board side are mutually electrically connected.
Abstract:
A printed card with impressions comprising several rows of conducting holes spaced apart by a multiple of a constant pitch and disposed in a repetitive pattern, each conducting hole being connected to a wiring stud provided on the wiring face within the pattern. Furthermore, the holes of some adjacent rows are connected to wiring tracks provided on the component face of the card and the holes of other adjacent rows are connected together and connected to the same wiring stud.