Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems. Improved shade matching/prediction results are obtained through the use of volumes/regions, preferably polygons, around shades in a shade system.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
An optical assembly for use with a spectrophotometer. The optical assembly may comprise an illumination source, a detection sensor, a monitor sensor, and an optical piece having a first side adapted to face a sample. The optical piece may define an illumination channel extending from the illumination source toward the first side. The optical piece may also define a detection channel extending from the first side toward the detection sensor. In addition, the optical piece may define a monitor channel extending from the illumination channel toward the monitor sensor. Also, a light emitting diode (LED) assembly for use with an optical measurement device. The LED assembly may comprise a substrate having a top surface and a bottom surface and a plurality of LED dies positioned on the substrate to emit light in a first direction normal to the bottom surface of the substrate. The LED assembly may also comprise a plurality of leads in electrical contact with the plurality of LED dies. The plurality of leads may be positioned on the bottom surface of the substrate, and may be configured to surface-mount to a board.
Abstract:
Color measuring systems and methods are disclosed. Perimeter receiver fiber optics are spaced apart from a central source fiber optic and receive light reflected from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
A color density measuring device (10) for determining the color density of an ink layer applied to a printing material (22), having a light source (24) for illuminating the printing material (22) and a sensor for receiving the light remitted from the printing material (22), is characterized according to the invention in that the sensor is fashioned as a multicolor image sensor (12), and a device (14, 24, 26; 30) is provided with the aid of which the light incident at the multicolor image sensor (12) is restricted to at least one predetermined wavelength band.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
Optical properties of an object are determined via light provided to the object via a probe tip including a plurality of light source/light receiver pairs. Light is received from a first light source/light receiver pair, and the first light source/light receiver pair is arranged so that a first measurement generates data based on light from the object received from a first average optical depth or first thickness sensitivity. Light is received from a second light source/light receiver pair, and the second light source/light receiver pair is arranged so that a second measurement generates data based on light from the object received from a second average optical depth or a second thickness sensitivity. The second average optical depth is different from the first average optical depth. Optical properties of the object are determined based on the data generated by the first and second measurements.
Abstract:
A color image forming apparatus, when a white LED is made to emit light onto a color image so that the reflected light can be detected, changes a color measuring condition in adaptation to a reflectance predicted for the image from the forming condition of the color image to be detected. The amount of reflected light is detected by photodiodes, and the image forming condition is adjusted, based on the detected amount of reflected light of each color image. Thereby, irrespective of the reflectance of each color image, the color measurement of each color image is effected with good accuracy, and the hue and density of the color image to be detected are accurately detected, thereby to form a color image with excellent color reproduction.
Abstract:
Disclosed is an apparatus and method for a compact, rugged, and inexpensive spectrometer that will make possible a range of new applications for optical spectroscopy including point-of-care medical devices, personal monitors, and ubiquitous environmental sensing. Embodiments of the disclosure include silicon photodetectors where incident light passes through a layer of an inexpensive, absorbing thin film. In one embodiment, one or more photodetectors may be used where a series of absorbing thin film layers are passed over the photodetectors. In another embodiment, an absorbing thin film layer is placed over one or more photodetectors where the absorptivity of the thin film layer is different for each photodetector.
Abstract:
A diffraction grating and a prism with the appropriate characteristics are employed to provide a combined dispersive characteristic that is substantially linear over the visible spectrum. Radiation from the grating and prism is collimated by a lens towards a detector array. The grating or a telecentric stop between the grating and prism is placed at a focal point of the lens in a telecentric arrangement so that equal magnification is achieved at the detector array. If the detector array is replaced by a plurality of optical channels, a multiplexer/demultiplexer is obtained. A one or two dimensional detector array may be used for detecting the characteristics of a radiation beam. Alternatively, a one or two dimensional array of optical channels may be employed in a multiplexer or demultiplex arrangement with a single output/input optical channel.