Abstract:
A microreactor for use in a microscope, comprising a first and second cove layer (13), which cover layers are both at least partly transparent to an electron beam (14) of an electron microscope, and extend next to each other at a mutual distance from each other and between which a chamber (15) is enclosed, wherein an inlet (4) and an outlet (5) are provided for feeding fluid through the chamber and wherein heating means (8) are provided for heating the chamber and/or elements present therein.
Abstract:
A grid assembly for cryo-electron microscopy may be fabricated using standard nanofabrication processes. The grid assembly may comprise two support members, each support member comprising a silicon substrate coated with an electron-transparent silicon nitride layer. These two support members are positioned together with the silicon nitride layers facing each other with a rigid spacer layer disposed therebetween. The rigid spacer layer defines one or more chambers in which a biological sample may be provided and fast frozen with a high degree of control of the ice thickness.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful intermediates and products, such as energy, fuels, foods or materials. For example, systems and methods are described that can be used to treat feedstock materials, such as cellulosic and/or lignocellulosic materials, in a vault in which the equipment is protected from radiation and hazardous gases by equipment enclosures. The equipment enclosures may be purged with gas.
Abstract:
A charged particle beam instrument is offered which can introduce cooled samples easily into a sample chamber. The charged particle beam instrument (100) of the present invention has: a sample container (10) that accommodates samples (S) and a refrigerant (6) for cooling the samples (S); an evacuated sample chamber (20); a sample exchange chamber (30) connected with the sample chamber (20); a partition valve (40) disposed between the sample exchange chamber (30) and the sample container (10); and vacuum pumping equipment (50) for evacuating the sample container (10). The sample container (10) can be connected with the sample exchange chamber (30) via the partition valve (40). The sample container (10) is evacuated by the vacuum pumping equipment (50) while the partition valve (40) is closed.
Abstract:
A sample observation method includes irradiating a sample with a primary charged particle beam, detecting a secondary charged particle signal obtained by the irradiating, and observing the sample. The method is characterized by causing the primary charged particle beam generated in a charged particle optical lens barrel, which is maintained in a vacuum state, to be transmitted or passed through a separating film disposed to isolate a space in which the sample is placed from the charged particle optical lens barrel; and detecting a transmitted charged particle beam obtained by irradiating the sample, placed in an atmospheric pressure or a predetermined gas atmosphere of a slightly negative pressure state compared with the atmospheric pressure, with the primary charged particle beam.
Abstract:
A system and a method for evaluating a lithography mask, the system may include: (a) electron optics for directing primary electrons towards a pellicle that is positioned between the electron optics and the lithography mask; wherein the primary electrons exhibit an energy level that allows the primary electrons to pass through the pellicle and to impinge on the lithographic mask; (b) at least one detector for detecting detected emitted electrons and for generating detection signals; wherein detected emitted electrons are generated as a result of an impingement of the primary electrons on the lithographic mask; and (c) a processor for processing the detection signals to provide information about the lithography mask.
Abstract:
A novel sample holder for specimen support devices for insertion in electron microscopes. The novel sample holder of the invention allows for the introduction of gases or liquids to specimens for in situ imaging, as well as electrical contacts for electrochemical or thermal experiments.
Abstract:
Electron microscope support structures and methods of making and using same. The support structures are generally constructed using semiconductor materials and semiconductor manufacturing processes. The temperature of the support structure may be controlled and/or gases or liquids may be confined in the observation region for reactions and/or imaging.
Abstract:
A novel specimen holder for insertion in electron microscopes, wherein the novel specimen holder is designed to minimize electrical noise so that signal integrity can be maintained during in situ electron microscopy.
Abstract:
A scanning electron microscope suitable for imaging samples in a non-vacuum environment, the scanning electron microscope including an electron source located within an enclosure maintained under vacuum, an electron permeable membrane disposed at an opening of the enclosure separating an environment within the enclosure which is maintained under vacuum and an environment outside the enclosure which is not maintained under vacuum, the electron permeable membrane not being electrically grounded and at least one non-grounded electrode operative as an electron detector.