Abstract:
Spectrophotometers and spectroscopy processes are described that can provide for in-line calibration at every spectral acquisition as well as for continuous response correction during sample processing. The spectrophotometers include multiple polychromatic light sources that include characteristic emission spectra for use as an internal wavelength drift calibration system that is independent of environmental factors. Correction functions provided by the internal calibration process can be applied continuously and across an entire sample spectrum. The intensity response of each spectrometer in a spectrophotometer can also be monitored and continuously corrected for stray light, dark current, readout noise, etc.
Abstract:
A method of interrogating an absorbing sample includes using a mode-locked laser mode-locked in both a clock-wise (CW) and a counter-clock wise (CCW) direction to generate first and second optical pulses having different repetition rates. One of the first and second optical pulses is directed in a CW direction and the other of the first and second optical pulses is directed in the CCW direction. The first optical pulses are transmitted through the absorbing sample to probe the absorbing sample while the second optical pulses are transmitted through the absorbing sample to act as a local oscillator. An interference pattern produced by interference between the first and second optical pulses is detected after traversing the absorbing sample.
Abstract:
In some embodiments, a system comprises a head-mounted frame removably coupleable to the user's head; one or more light sources coupled to the head-mounted frame and configured to emit light with at least two different wavelengths toward a target object in an irradiation field of view of the light sources; one or more electromagnetic radiation detectors coupled to the head-mounted member and configured to receive light reflected after encountering the target object; and a controller operatively coupled to the one or more light sources and detectors and configured to determine and display an output indicating the identity or property of the target object as determined by the light properties measured by the detectors in relation to the light properties emitted by the light sources.
Abstract:
A spectrometer includes a spectrogram, digital camera and signal processing to compensate for limits of system spatial resolution, spatial distortions and lack of precision spatial registration, limited dynamic range, The spectrogram is captured by a digital camera, and the corresponding image is converted to a wavelength and magnitude with mitigation of optical point spread function and potential magnitude clipping due to over-exposure. The clipped portions of the signal are reconstructed using tangential adjacent point spread functions as a reference or adjacent channel ratios as reference. Multichannel camera detectors having unique response magnitude ratios per wavelength are exploited to make associated direct mappings, thereby making improvements in wavelength resolution and accuracy to up to at least one to two orders of magnitude.
Abstract:
A light source and a method for its use in an optical sensor are provided, the light source including a resistively heated element. The light source includes a power circuit configured to provide a pulse width modulated voltage to the resistively heated element, the pulse width modulated voltage including: a duty cycle with a first voltage; and a pulse period including a period with a second voltage, wherein: the duty cycle, the first voltage, and the pulse period are selected so that the resistively heated element is heated to a first temperature; and the first temperature is selected to emit black body radiation in a continuum spectral range. Also provided is an optical sensor for determining a chemical composition including a light source as above.
Abstract:
A spectrometer has an entry aperture for coupling in electromagnetic radiation to be spectroscope, a refractive or diffractive optical element arranged such that electromagnetic radiation which is coupled in through the entry aperture is incident on the refractive or diffractive optical element to be spectrally split there, and at least two individual detectors which, for the detection of different spectral ranges of the split electromagnetic radiation, are arranged next to one another in the direction of the spectral splitting of the electromagnetic radiation. Electromagnetic radiation from a predetermined ultraviolet wavelength range is directed onto one of the individual detectors by the optical element and electromagnetic radiation from a predetermined blue wavelength range is directed onto another of the detectors by the optical element. Electromagnetic radiation from the intermediate wavelength range between the predetermined ultraviolet wavelength range and the predetermined blue wavelength range are not detected.
Abstract:
A light radiating portion (11a, 11b, 12, 51, 52) radiates light with wavelength λ1 having predetermined absorptivity for an object (16) and light with wavelength λ2 having smaller absorptivity for the object (16) than the wavelength λ1, to a target, so as to scan in 2-dimensional directions. A light receiving portion (17) receives scattered lights reflected by the target based on light with wavelength λ1 and light with wavelength λ2. A measuring portion (18) generates information used for detection of the object (16) at the target, based on difference between the two scattered lights with wavelength λ1 and wavelength λ2 received by the light receiving portion (17). An output portion (53) outputs whether or not the object is present at the target, by 2-dimensional area information, based on scanning by the light radiating portion (11a, 11b, 12, 51, 52) and information generated by the measuring portion (18).
Abstract:
An apparatus for analyzing, identifying or imaging an target including first and second laser beams coupled to a pair of photoconductive switches to produce CW signals in one or more bands in a range of frequencies greater than 100 GHz focused on and transmitted through or reflected from the target; and a detector for acquiring spectral information from signals received from the target and using a multi-spectral heterodyne process to generate an electrical signal representative of some characteristics of the target. The lasers are tuned to different frequencies and a frequency shifter in the path of one laser beam allows the terahertz beam to be finely adjusted in one or more selected frequency bands.
Abstract:
A method for manufacturing a sloped structure is disclosed. The method includes the steps of: (a) forming a sacrificial film above a substrate; (b) forming a first film above the sacrificial film; (c) forming a second film having a first portion connected to the substrate, a second portion connected to the first film, and a third portion positioned between the first portion and the second portion; (d) removing the sacrificial film; and (e) bending the third portion of the second film after the step (d), thereby sloping the first film with respect to the substrate.
Abstract:
A plant sensor includes a first light emitter to emit first measuring light with a first wavelength to irradiate a growing condition measurement target therewith; a second light emitter to emit second measuring light with a second wavelength to irradiate the growing condition measurement target therewith; a light receiver to receive reflected light of each of the first and second measuring light from the growing condition measurement target and output a received light signal; a controller to control light emission; a light path merging unit to merge a first outgoing light path of the first measuring light from the first light emitter and a second outgoing light path of the second measuring light from the second light emitter; and a common outgoing light path connecting the light path merging unit to a light exit portion emitting the first measuring light and the second measuring light.