Abstract:
A method of spectrometric analysis comprises obtaining one or more sample spectra for an aerosol, smoke or vapour sample. The one or more sample spectra are subjected to pre-processing and then multivariate and/or library based analysis so as to classify the aerosol, smoke or vapour sample. The results of the analysis are used for various surgical or non-surgical applications.
Abstract:
A method of ion imaging is disclosed that includes automatically sampling a plurality of different locations on a sample using a front device which is arranged and adapted to generate aerosol, smoke or vapour from the sample. Mass spectral data and/or ion mobility data corresponding to each location is obtained and the obtained mass spectral data and/or ion mobility data is used to construct, train or improved a sample classification model.
Abstract:
A method is disclosed comprising obtaining or acquiring chemical or other non-mass spectrometric data from one or more regions of a target using a chemical sensor. The chemical or other non-mass spectrometric data may be used to determine one or more regions of interest of the target. An ambient ionisation ion source may then be used to generate aerosol, smoke or vapour from one or more regions of the target.
Abstract:
A mass spectrometer interface, having improved sensitivity and reduced chemical background, is disclosed. The mass spectrometer interface provides improved desolvation, chemical selectivity and ion transport. A flow of partially solvated ions is transported along a tortuous path into a region of disturbance of flow, where ions and neutral molecules collide and mix. Thermal energy is applied to the region of disturbance to promote liberation of at least some of the ionized particles from any attached impurities, thereby increasing the concentration of the ionized particles having the characteristic m/z ratios in the flow. Molecular reactions and low pressure ionization methods can also be performed for selective removal or enhancement of particular ions.
Abstract:
A system of mass spectrometry is disclosed having an ion source for generating ions at substantially atmospheric pressure. The system has a sampling member with an orifice disposed therein. The sampling member forms a vacuum chamber with a mass spectrometer. The system also has a curtain plate between the ion source and the sampling member. The curtain plate has an aperture therein, having a cross-section and being spaced from the sampling member to define a flow passage between the curtain plate and the sampling member, and to define an annular gap between the orifice and the aperture. The area of the annular gap is less than the cross-sectional area of the aperture. The system also has a power supply for applying a voltage to the curtain plate, and a curtain gas flow mechanism for directing a curtain gas into the flow passage and the annular gap.
Abstract:
A mass spectrometer or ion mobility spectrometer is disclosed comprising: an ion block (2) for receiving ions; a heater (8) for heating the ion block (2); a vacuum housing (6); and an interface block (4) arranged between the ion block (2) and the vacuum housing (6); wherein the interface block (4) is formed from a polymer. The polymer interface block (4) inhibits the heat transfer from the ion block (2) to the vacuum housing (6) and also electrically isolates the ion block (2) and vacuum housing (6). The interface block (4) further comprises at least one conduit (12) through the body of the interface block (4). This enables gas to be transmitted through the interface block (4) to the ion block (2), and also enables the interface block (4) to be cooled.
Abstract:
Disclosed herein are systems and methods for mass spectrometry using laserspray ionization (LSI). LSI can create multiply-charged ions at atmospheric pressure for analysis and allows for analysis of high molecular weight molecules including molecules over 4000 Daltons. The analysis can be solvent-based or solvent-free. Solvent-free analysis following LSI allows for improved spatial resolution beneficial in surface and/or tissue imaging.
Abstract:
The invention relates to an ionization chamber for connection to a mass spectrometer. The ionization chamber has a temperature-control block with a gas inlet and a gas channel which starts at the gas inlet and leads into a gas outlet. A temperature-control device is positioned along the gas channel and ensures that a gas flowing in the gas channel is brought to a specific temperature, i.e. it is heated or cooled, before it enters the ionization chamber. The temperature-control block has a formed part into which a structure of the gas channel is incorporated and which is fabricated by means of a sol-gel process, for example out of a glass or ceramic material.
Abstract:
The present invention relates to electrospray ionization (ESI) at atmospheric pressure coupled with a mass spectrometer, in particular to a special kind of micro-electrospray with liquid flows in the range of 0.1 to 100 microliters per minute. The invention describes the use of an off-axis pre-entrance channel in an ESI ion source to prevent particulate matter with higher inertia than the (charged) gas molecules, such as droplets, from entering the mass spectrometer. The elimination of the particulate matter improves the quantitative precision of an LC/MS bioassay, minimizes the contamination of the mass spectrometer and improves the robustness for high throughput assays.
Abstract:
A mass analyzer includes a desolvation chamber into which an upstream gas is injected to provide a counter-flow to said downstream flow in the chamber. The counter-flow may slow the downstream flow of solvated ionized particles in the chamber, while allowing lighter desolvated ions to travel toward an outlet aperture of the desolvation chamber.