Abstract:
A printed wiring board (1) includes: a base substrate (3); a plurality of pads (15a, 17a) for electrical connection that are disposed at one surface side of the base substrate (3) and at a connection end portion (13) to be connected with another electronic component (50); wirings (9, 11) that are connected with the pads (15a, 17a); and engageable parts (28, 29) that are formed at side edge parts of the connection end portion (13) and are to be engaged with engagement parts (58) of the other electronic component (50) in the direction of disconnection. The wirings (9, 11) are disposed at the other surface side of the base substrate (3). The flexible printed wiring board (1) further includes reinforcement layers (31, 32) that are disposed at the one surface side of the base substrate (3) and at a frontward side with respect to the engageable parts (28, 29) when viewed in the direction of connection with the other electronic component, and that are formed integrally with the pads (15a).
Abstract:
A fiber optic sub-assembly includes a printed circuit and a TIR sub-assembly supported by the printed circuit board. The printed circuit board includes opposed first and second surfaces and has a printed circuit board height defined by the distance between the first and second surfaces. The TIR sub-assembly has a nominal height between lowermost and uppermost portions thereof. The TIR sub-assembly is at least partially integrated into the printed circuit board so that an overall stack height of the printed circuit board and TIR sub-assembly is less than the sum of the printed circuit board height and nominal height of the TIR sub-assembly.
Abstract:
The flexible printed circuit board includes a base layer, a first circuit layer and a second circuit layer, the first circuit and the second circuit layer formed on both sides of the base layer; conducting holes extending through the base layer and the first copper layer, the conducting holes include annular copper ring embedded in the first circuit layer. A height difference between a surface of the annular copper ring and a surface of the first circuit layer is in a range from 0 to 3 micrometers. A method for manufacturing the flexible printed circuit board is also provided.
Abstract:
A printed circuit board includes a plurality of layers including attachment layers and routing layers; and via patterns formed in the plurality of layers, each of the via patterns comprising: dual diameter first and second signal vias forming a differential signal pair, the first and second signal vias being configured to accept contact tails of signal conductors of a connector; dual diameter ground shadow vias adjacent to each of the first and second signal vias, wherein the dual diameter shadow ground vias have a reversed diameter configuration with respect to the dual diameter first and second signal vias; and ground vias configured to accept contact tails of ground conductors of the connector.
Abstract:
An optoelectronic assembly includes a printed circuit board (PCB) defining opposite upper and lower surfaces, and equipped, on the upper surface, with an active component and an Integrated Circuit (IC) linked to each other via the flip chip technology, a lens module located on the side of the lower surface and communicating with the active component through via holes in the PCB, and a fiber assembly located in the lens module to be optically coupled to the active component via said lens module.
Abstract:
A PCB according to an exemplary embodiment of the present disclosure includes a plurality of unit PCBs arrayed on the PCB, and a sawing line formed among the plurality of unit PCBs. The sawing line disposed among the dummy unit PCBs is formed with a conductive pad including a first layer formed with a PSR (Photo Solder Resistor) and a second layer on which the PSR is removed to open the conductive pad. Burr generation on the unit PCBs during a sawing process is prevented and a dummy area can be reduced.
Abstract:
A substrate having a plurality of light-emitting elements mounted thereon is described. The substrate may be mounted in a lighting apparatus and may include a surface on which the plurality of light-emitting elements are mounted and one or more holes through which heat may be conducted from the first surface to another surface of the substrate. For example, a heat conductive and electrically non-conductive material may cover a surface of the one or more holes. According to some arrangements, the surface of the substrate may include an electrically non-conductive layer and an electrically conductive layer such that the electrically non-conductive layer is electrically isolated or separated from the electrically conductive layer.
Abstract:
A plug connector mateable with the receptacle connector, includes an insulative housing enclosed in a metallic shell, defining a receiving cavity to receive the mating tongue, and equipped with a plurality of contacts on opposite sides in the vertical direction. A latch forms a pair of locking heads extending into two opposite lateral sides of the receiving cavity to lock with a shielding plate embedded within a mating tongue of the complementary receptacle connector during mating. The plug connector is equipped with a pair of locking screws symmetrically located by two sides of the metallic shell and aligned with the pair of locking heads in the transverse direction, and the receptacle connector is equipped with a pair of screw holes to receive the pair of locking screws in a locked manner.
Abstract:
A rigid-flexible circuit board includes at least one flexible circuit board and at least one rigid circuit board. The flexible circuit board includes a flexible-board substrate, a plurality of flexible circuit board differential mode signal lines, at least one flexible circuit board grounding line, a flexible circuit board insulation layer formed on the upper surface of the flexible-board substrate and covering the flexible circuit board differential mode signal lines and the flexible circuit board grounding line. The rigid circuit board is stacked on the stacking section of the flexible circuit board. A shielding layer is formed on the flexible circuit board insulation layer of the flexible circuit board and corresponds to the extension section of the flexible circuit board. The shielding layer further extends from the extension section to the stacking section. An impedance control structure is formed on the shielding layer to control the impedance of the flexible circuit board differential mode signal lines.
Abstract:
The invention relates to a control module (4) for an electric appliance (3), comprising: a printed circuit board (11), on which electrical and electronic components (12) are mounted; and an electronic power component (10) separated from the printed circuit board (11) and held in relation thereto by means of at least one electrical connection body (18a, 18b, 18c) fixed to the printed circuit board (11) and connected to one (D) of the terminals (S, D, G) of the electronic power component (10).