Abstract:
A high speed flexible interconnect cable for an electronic assembly includes a number of conductive layers and a number of dielectric layers. Conductive signal traces, located on the conductive layers, combine with the dielectric layers to form one or more high speed electrical transmission line structures. The cable can be coupled to electronic components using a variety of connection techniques. The cable can also be terminated with any number of known or standardized connector packages.
Abstract:
The invention provides a transmission noise suppressing structure and a wiring board capable of suppressing a transmission noise transferred through a power supply line, stabilizing a power supply voltage, and reducing signal transmission line cross talk transmitted through the power supply line or a ground layer without being affected by a resistive layer. A transmission noise suppressing structure includes a power supply line and a signal transmission line arranged apart from each other on the same surface; a ground layer arranged apart from the power supply line and the signal transmission line; and a resistive layer arranged apart from the power supply line and the ground layer. The resistive layer has an area (I) which faces the power supply line and an area (II) which does not face the power supply line. The resistive layer and the signal transmission line are apart from each other.
Abstract:
A light emitting device is provided. The light emitting device comprises a substrate, a first lead frame and a second lead frame on the substrate, a first light emitting diode, a heat conductor on the substrate, and a heat transfer pad. The first light emitting diode on the first lead frame is electrically connected to the first lead frame and the second lead frame. The heat conductor is electrically separated from the first lead frame. The heat transfer pad contacts the first lead frame and the heat conductor thermally to connect the first lead frame to the heat conductor.
Abstract:
Illumination assemblies include a substrate having a first and second electrically conductive layer separated by an electrically insulating layer. The insulating layer includes a polymer material loaded with thermally conductive particles. At least a portion of the thermally conductive particles simultaneously contact both the first and second electrically conductive layers. A plurality of light sources such as LEDs or other miniature light sources are preferably disposed on the first conductive layer.
Abstract:
A plurality of land sections, each enclosed by two slits, are formed in a ground wire provided on a side of a flexible wiring board to which a piezoelectric element is connected. Since the ground wire and the land sections are connected by only a thin connection section, the solder deposited on the land sections does not flow to the ground wire.
Abstract:
A circuit board includes an analog area and a digital area. The analog area includes an analog ground layer and an analog wiring layer formed on the analog ground layer. The digital area includes a digital ground layer and a digital wiring layer formed on the digital ground layer. The digital ground layer is connected with the analog ground layer to form a main ground layer. The digital wiring layer is separate from the analog wiring layer.
Abstract:
A circuit board comprises signaling through-holes that pass through a plurality of layers, including signal trace and digital ground plane layers, and power reference plane layers. Clearances are set to achieve a desired impedance characteristic for the through-holes. At a power reference plane layer, the clearance is defined around multiple neighboring through-holes.
Abstract:
A mounting region is provided at an approximately center of one surface of an insulating layer. A conductive trace is formed so as to outwardly extend from inside of the mounting region. A cover insulating layer is formed in the periphery of the mounting region so as to cover the conductive trace. A terminal of the conductive trace is arranged in the mounting region, and a bump of an electronic component is bonded to the terminal. A metal layer made of copper, for example, is provided on the other surface of the insulating layer. A slit is formed in the metal layer so as to cross a region being opposite to the electronic component and to divide the metal layer.
Abstract:
Disclosed is a printed wiring board comprising an insulating layer having a rectangular flat shape and provided with fibers in the layer, the direction of the fiber in the layer being almost parallel to any side of the rectangle, a reference potential layer disposed on one surface side of the insulating layer, a plurality of wiring patterns for signal transmission disposed on the other surface side of the insulating layer so as to have nearly similar angles respectively with respect to the direction of the fiber in the insulating layer, and a pad portion to mount a semiconductor device, disposed on the other surface side of the insulating layer to conduct the plurality of wiring patterns.
Abstract:
An electronic filtering device includes continuous trace on a dielectric substrate and a dissipation layer communicatively coupled to the trace. The dissipation layer may include disconnected metal particles, which may be embedded in a substrate, for example in an epoxy. The continuous trace may be meandering, for example crenulated, coil or spiral signal path. At least a second continuous trace may be spaced from the first by the substrate, and conductively coupled by a via. The electronic filtering device may be used in one or more printed circuit boards (PCBs) that form stages of an input/output system.