Abstract:
A method for producing a mirror plate for a Fabry-Perot interferometer includes providing a substrate, which includes silicon, implementing a semi-transparent reflective coating on the substrate, forming a passivated region in and/or on the substrate by etching a plurality of voids in the substrate, and by passivating the surfaces of the voids, forming a first sensor electrode on top of the passivated region, and forming a second sensor electrode supported by the substrate.
Abstract:
A spectrometric device for optical analysis of material composition, coating thickness, surface porosity, and/or other characteristics uses several monochromatic light sources—e.g., laser diodes—to illuminate a sample, with a camera taking an image of the sample under each source's light, and with the various images then being combined to generate a (hyper)spectral image. To address the difficulty in obtaining uniform illumination intensity across the illuminated sample area with solid-state light sources, the output from the light sources may be supplied to an integrating sphere (preferably after being combined within a fiber combiner), and then to a fiber bundle whose output ends are configured as a ring light (a ring of fiber ends directing light at a common spot). The camera may then focus on the spot, at which the sample may be placed for illumination and imaging.
Abstract:
A light radiating portion radiates light with wavelength λ1 having predetermined absorptivity for an object and light with wavelength λ2 having smaller absorptivity for the object than the wavelength λ1, to a target, so as to scan in 2-dimensional directions. A light receiving portion receives scattered lights reflected by the target based on light with wavelength λ1 and light with wavelength λ2. A measuring portion generates information used for detection of the object at the target, based on difference between the two scattered lights with wavelength λ1 and wavelength λ2 received by the light receiving portion. An output portion outputs whether or not the object is present at the target, by 2-dimensional area information, based on scanning by the light radiating portion and information generated by the measuring portion.
Abstract:
A user device including a camera, a spectrometer module, and a processing unit is disclosed. In one aspect, the camera is adapted to acquire at least one image of a scenery which falls within a field of view of the camera. The spectrometer module is adapted to acquire spectral information from a region within the scenery which region falls within a field of view of the spectrometer module. The processing unit is adapted to determine, based on information relating the field of view of the spectrometer module to the field of view of the camera, a spectrometer module target area, within the at least one image, corresponding to the region. The processing unit is adapted to output display data to a screen of the user device for providing an indication of the target area on the display.
Abstract:
An information processing apparatus includes an obtainment unit configured to obtain spectroscopic information generated from image information of a plant captured by an imaging unit; and a generation unit configured to generate a control signal for controlling a degree of water stress of the plant, based on the obtained spectroscopic information.
Abstract:
Methods and systems for designing an integrated computational element (ICE) device are provided. The method includes generating a plurality of ICE device models with a design suite, each ICE device model being configured to detect a characteristic of interest of a sample, and including one or more layers. Further determining at least one transmission spectrum for each theoretical ICE device model for at least one distribution of incident light angles and at least one performance criteria for each ICE device model for the at least one of distribution of incident light angles. Also, ranking the ICE device model based on the at least one performance criteria of each ICE device model at the at least one distribution of incident light angles, and selecting for fabrication one or more ICE device models based on favorable angular tolerance. An optical system including an ICE device as described above is also provided.
Abstract:
A printer includes a printing section that ejects an ink, and a spectrometer that disperses incident light. The spectrometer includes a window section that transmits the light, an optical filter device, and a light receiving section. The optical filter device includes a variable wavelength interference filter as a dispersing element that disperses light transmitted by the window section. The light receiving section receives the light which is dispersed by the variable wavelength interference filter. A dirtiness of the window section is detected based on measured values corresponding to each of a plurality of wavelengths obtained by spectrally measuring light from a reference object, and reference values corresponding to each of the plurality of wavelengths.
Abstract:
A system for monitoring, in real time, relatively large samples as they are caused to pass by an ellipsometer or the like system, and method of its use.
Abstract:
A spectrometer includes a light source that emits a beam into a sample volume comprising an absorbing medium. Thereafter, at least one detector detects at least a portion of the beam emitted by the light source. It is later determined, based on the detected at least a portion of the beam and by a controller, that a position and/or an angle of the beam should be changed. The beam emitted by the light source is then actively steered by an actuation element under control of the controller. In addition, a concentration of the absorbing media can be quantified or otherwise calculated (using the controller or optionally a different processor that can be local or remote). The actuation element(s) can be coupled to one or more of the light source, a detector or detectors, and a reflector or reflectors intermediate the light source and the detector(s).
Abstract:
An optical sharp fibrous needle probe includes an optical fiber in a hollow needle ending in a cutting point. The optical fiber is inserted and bonded in the hollow of the needle and then polished to take on the exact needle cutting shape. The material to be explored is pricked by the needle. A light injection and recovery device is placed at the inlet of the fiber. The material located at the sharp end of the needle backscatters the incident light and generates an endogenous fluorescence signal. A part of this luminous flux is recovered by the point of the needle and sent back to the injection and recovery device. The same analyses the light in strength, duration and wavelength and enables a diagnostics without taking the in-depth explored material. An optical telemeter placed on the outer tip of the needle enables the depth of the explored area to be known.