Abstract:
A device and method for identifying solid and liquid materials use near-infrared transmission spectroscopy combined with multivariate calibration methods for analysis of the spectral data. Near-infrared transmission spectroscopy is employed within either the 700-1100 nm or the 900-1700 nm wavelength range to identify solid or liquid materials and determine whether they match specific known materials. Uses include identifying solid (including powdered) and liquid materials with a fast measurement cycle time of about 2 to 15 seconds and with a method that requires no sample preparation, as well as quantitative analysis to determine the concentration of one or more chemical components in a solid or liquid sample that consists of a mixture of components. A primary application of such analysis includes detection of counterfeit drug tablets, capsules and liquid medications.
Abstract:
A reference harmonic absorption curve of a laser absorption spectrometer can have a reference curve shape derived from a reference signal generated by the detector in response to light passing from the laser light source through a reference gas or gas mixture. The reference gas or gas mixture can include one or more of a target analyte and a background gas expected to be present during analysis of the target analyte. A test harmonic absorption curve having a test curve shape is compared with the reference harmonic absorption curve to detect a difference between the test curve shape and the reference curve shape. Operating and/or analytical parameters of the laser absorption spectrometer are adjusted to correct the test curve shape to reduce the difference between the test curve shape and the reference curve shape.
Abstract:
In this electric field vector detection method, an electro-optic crystal, where a (111) surface of an optical isotropic medium is cut out, is used as a terahertz wave detection element. The method includes: causing polarization of probe light of ultrashort pulsed light to be circular polarization; allowing the probe light having circular polarization to enter the terahertz wave detection element and probing the terahertz wave; modulating the probe light, having probed the terahertz wave, by a rotating analyzer and detecting the modulated probe light by a photodetector; performing lock-in detection of a detection signal from the photodetector by a lock-in detector using a frequency based on a rotational frequency of the rotating analyzer as a reference signal; and detecting an electric field vector of the terahertz wave based on a detection signal from the lock-in detector.
Abstract:
An active imaging system, which includes a light source and light sensor, generates structured illumination. The light sensor captures transient light response data regarding reflections of light emitted by the light source. The transient light response data is wavelength-resolved. One or more processors process the transient light response data and data regarding the structured illumination to calculate a reflectance spectra map of an occluded surface. The processors also compute a 3D geometry of the occluded surface.
Abstract:
Apparatus and method to measure optical absorption spectra with spatial resolution on the micron scale. An exemplary setup combines a continuous white light excitation beam in transmission geometry with a confocal microscope. Spatial resolution better than 1.4 μm in the lateral and 3.6 μm in the axial, directions was obtained. The detection and measurement of the absorption spectrum of hemoglobin in a single red blood cell under physiological conditions on the timescale of seconds was realized. The apparatus and method enables the investigation of spatial variations in the optical density of small samples on the micron scale and the study of biological assemblies at the single cell level, leading to applications in optical diagnostics, microfluidics, and other areas.
Abstract:
[Object] To provide an optical device for use with coherent terahertz light, which enables to reduce and remove an unwanted interference pattern, and to acquire a terahertz image of high image quality.[Solving Means] The optical device for use with coherent terahertz light includes an optical system (2) that uses coherent terahertz light beam (1) whose frequency(ies) is/are within a range from 0.1 to 10 THz. A structure(s) (4) being located outside of effective diameter (3) of the beam (1) and including anti-reflection material (5) on an area(s) of the structure, the area(s) is/are facing to the beam (1).
Abstract:
Methods and optical detection systems (200, 300, 800, 900) for generating and processing a real-time time-domain cavity ringdown spectroscopy (CRDS) signal (831, 931) from an absorbing species in an optical detection system (200, 300, 800, 900) having an optical ringdown cavity (200, 300) are disclosed. The optical ringdown cavity (200, 300) is adapted for accepting a sample of an absorbing species. One or more modulated light signals (241,243,245,341) are generated using one or more light sources (240, 242, 244, 340). The light source(s) (240, 242, 244, 340) is pulsed at a specified pulse rate(s). The modulated light signal(s) (241,243,245, 341) is resonated using the optical ringdown cavity (200, 300) comprising a plurality of mirrors (220, 230), or sets of mirrors (320, 330), to produce the CRDS signal (831, 931). The reflectivity of the mirrors (220, 230), or sets of mirrors (320, 330), is dependent upon the pulse rate of the modulated light signals (241,243,245,341). Different beamlines (212, 214, 216, 312, 314, 316) are established by the modulated light signal(s) (241,243,245, 341) and the mirrors (220, 230, 320, 330) interacting with the absorbing species sample.
Abstract:
A spectroscopy system includes an array of quantum cascade lasers (QCLs) that emits an array of non-coincident laser beams. A lens array coupled to the QCL array substantially collimates the laser beams, which propagate along parallel optical axes towards a sample. The beams remain substantially collimated over the lens array's working distance, but may diverge when propagating over longer distances. The collimated, parallel beams may be directed to/through the sample, which may be within a sample cell, flow cell, multipass spectroscopic absorption cell, or other suitable holder. Alternatively, the beams may be focused to a point on, near, or within the target using a telescope or other suitable optical element(s). When focused, however, the beams remain non-coincident; they simply intersect at the focal point. The target transmits, reflects, and/or scatters this incident light to a detector, which transduces the detected radiation into an electrical signal representative of the target's absorption or emission spectrum.
Abstract:
An illumination device is provided with a light source, a photodetector, and a support structure. The light source, which emits light, has light distribution in which a reference axis serves as an axis of symmetry or light distribution in which a plane including the reference axis serves as a plane of symmetry. A first light beam in the light is guided to the object to be illuminated. A second light beam in the light is guided to the photodetector. The photodetector detects intensity of the second light beam. The light source and the photodetector are supported by the support structure in positions and postures that allow the first light beam and the second light beam to be guided in an aforementioned manner. A traveling direction of the first light beam and a traveling direction of the second light beam make the same angle with the reference axis.
Abstract:
Various implementations of an apparatus for sensing one or more parameters are disclosed herein. The apparatus includes a sweeping wavelength laser configured to generate a sweeping wavelength optical signal; an optical fiber including a Fiber Bragg Grating (FBG) structure configured to sense a parameter, wherein the optical fiber is configured to receive the sweeping wavelength optical signal, wherein the FBG structure is configured to produce a reflected optical signal with a particular wavelength in response to the sweeping wavelength optical signal, and wherein the particular wavelength varies as a function of the parameter; a photo detector configured to generate an electrical signal based on the reflected optical signal; a comparator configured to generate a pulse based on a comparison of the electrical signal to a threshold; and a processor configured to generate an indication of the parameter based on the pulse. The comparator may be configured as a Schmitt trigger.