Abstract:
A METHOD FOR THE CHROMATIC ANALYSIS OF AN OBJECT INCLUDING FOCUSING A BEAM OF LIGHT FROM THE OBJECT ONTO A CONCAVE DIFFRACTION GRATING WHERE AN IMAGE IS FORMED, THE BEAM IS THEN DIRECTED TO A MASKED SPHERICAL MIRROR HAVING AT LEAST ONE APERATURE THEREIN, WHICH THEREBY SELECTS AT LEAST ONE BAND OF WAVELENGHTS WHICH IS REFLECTED ONTO A RECEIVING SURFACE. A CHROMATIC ANALYSIS DEVICE OF TO THE PRIMARY COLORS AND THE IMAGE IS RECONSTITUTED ON TO THE PRIMARY COLORS AND THE IMAGE IS RECONSTITUTED ON
THE SCREEN OF AN ELECTRON BEAM TUBE. A PLURALITY OF LENSES ARE DISPOSED BETWEEN THE MASKED MIRROR AND THE SCREEN FOR FOCUSING THE RECONSTITUTED IMAGE THEREON. THE DEVICE MAY BE USED FOR SPECTROPHOTOMETRY WHEREIN THE FOCUSING DEVICE EMPLOYED IS AN APERATURED DIAPHRAGM WITH A SPHERICAL MIRROR. THROUGHOUT, THE FOCUSING DEVICE AND THE MASKED MIRROR ARE LOCATED ON THE ROWLAND CIRCLE OF THE DIFFRACTION GRATING.
Abstract:
An illumination device comprises one or more emitter modules having improved thermal and electrical characteristics. According to one embodiment, each emitter module comprises a plurality of light emitting diodes (LEDs) configured for producing illumination for the illumination device, one or more photodetectors configured for detecting the illumination produced by the plurality of LEDs, a substrate upon which the plurality of LEDs and the one or more photodetectors are mounted, wherein the substrate is configured to provide a relatively high thermal impedance in the lateral direction, and a relatively low thermal impedance in the vertical direction, and a primary optics structure coupled to the substrate for encapsulating the plurality of LEDs and the one or more photodetectors within the primary optics structure.
Abstract:
Disclosed is an endoscope including: a four-color separation prism configured to separate light from an object into three primary colors of light and infrared light; four image sensors configured to convert optical images of the separated three primary colors of light and an optical image of the separated infrared light into electrical signals; and an output device configured to output the converted electrical signals.
Abstract:
The invention reduces a variation of a result of image inspection by alleviating a burden on the user relating to designation of an extracted color. An image inspection device displays a color image of an inspection target object, receives designation of at least a foreground region, and extracts a foreground color and a background color as color information from the foreground region and a background region, respectively. The image inspection device calculates a distance between a color of each pixel of the color image and the foreground color in a color space, and generates a foreground distance image. Similarly, the image inspection device forms a background distance image. The image inspection device inspects the inspection target object using a foreground-background image created by combining the foreground distance image and the background distance image.
Abstract:
Disclosed is an endoscope including: a four-color separation prism configured to separate light from an object into three primary colors of light and infrared light; four image sensors configured to convert optical images of the separated three primary colors of light and an optical image of the separated infrared light into electrical signals; and an output device configured to output the converted electrical signals.
Abstract:
A color irregularity detecting device includes a spectrometer which includes a dispersing element which disperses light from a measurement target and a light receiving element which receives light from the dispersing element, and a color irregularity detecting section which detects color irregularity, in which the color irregularity detecting device detects color irregularity by comparing measured values (reflectance) which are results of using the spectrometer to measure three measurement wavelengths of light among light from a measurement target region in which a predetermined color is printed on a medium to reference values corresponding to the predetermined color.
Abstract:
A lighting device that emits illumination light from two or more angular directions onto a sample surface to be measured, an imaging optical lens, and a monochrome two-dimensional image sensor are provided. This configuration provides a method and an apparatus that take a two-dimensional image of the sample surface to be measured at each measurement wavelength and accurately measure multi-angle and spectral information on each of all pixels in the two-dimensional image in a short time. In particular, a multi-angle spectral imaging measurement method and apparatus that have improved accuracy and usefulness are provided.
Abstract:
A spectral color sensor including a spectroscopic unit that disperses reflected light from a measurement target, and a light detection element that detects the dispersed light from the reflected light, comprises: a storage unit that stores a correspondence relationship between a pre-measured wavelength of the dispersed light projected on the light detection element and a projection position, as well as a stray light component; a first correction unit that, based on a measurement result when a color is measured, corrects the correspondence relationship between the wavelength of the dispersed light projected on the light detection element and the projection position stored in the storage unit; and a second correction unit that carry out wavelength correction on the stray light component stored in the storage unit using the corrected correspondence relationship between the wavelength and the projection position.