Abstract:
A method 10, 110 for making multi-layer circuit boards having metallized apertures 38, 40, 130, 132 which may be selectively and electrically grounded and having at least one formed air-bridge 92, 178.
Abstract:
An electrical circuit having at least one electrical component, in particular a strain-sensitive resistor and conductor tracks which are applied to a metallic carrier with the intermediate positioning of at least one insulating layer, at least one further conductor track, which is connected to at least one conductor track of the circuit, is applied to the surface of the metallic carrier. The invention also relates to methods for manufacturing the electrical circuit.
Abstract:
A multilayer resin wiring board includes a metal core substrate having a first main surface and a second main surface; a plurality of wiring layers located on the first and second main surfaces of the metal core substrate; a plurality of insulating resin layers, each intervening between the metal core substrate and the wiring layers and between the metal core substrate and the wiring layers and between the wiring layers; and a via formed on the wall of a through hole for connection to the metal core substrate extending through the insulating resin layers and the metal core substrate so as to establish electrical conductivity to the metal core substrate. The metal core substrate has a thin portion which is thinner than the remaining portion of the metal core substrate. The through hole for connection to the metal core substrate is formed through the thin portion by laser machining.
Abstract:
An interposer for interconnection between microelectronic circuit panels has contacts at its surfaces. Each contact extends from a central conductor, and has a peripheral portion adapted to contract radially inwardly toward the central conductor response to a force applied by a contact pad defining a central hole on the engaged circuit panel. Thus, when the circuit panels are compressed with the interposers, the contacts contract radially inwardly and wipe across the pads. The wiping action facilitates bonding of the contacts to the pads, as by friction welding, or by a conductive bonding material carried on the contacts themselves.
Abstract:
Structure for mounting electronic devices thereon. The structure is fabricated from a plurality of substrates each having a thermally and/or electrically conductive core surrounded by a dielectric material. The substrates can be adherently placed together with the electrically conductive cores providing ground and power planes or the substrates can be mounted together with connectors electrically interconnecting adjacent substrates and spacing the adjacent substrates apart providing a space through which a fluid can flow to extract heat generated by the electronic devices mounted thereon. The conductive cores provide both power and ground planes to the structure and a means for thermally dissipating the generated heat.
Abstract:
A method for constructing a feedthrough via connection and a corresponding apparatus includes a metallic plate (101), or rigidizer, preferably composed of an aluminum material. A solderable contact area (103), is located on the plate (101). This contact area (103) is preferable comprised of a copper material selectively disposed by a plasma spraying process. Next, an electrically insulating adhesive layer (105) is disposed onto the plate (101). This adhesive layer (105) has a feedthrough via (106) disposed therethrough aligned with the contact area (103). Then, a substrate (109), preferably composed of a flexible composite polyimide material, is disposed onto the adhesive layer (105). This flexible substrate (109) has a via (110) disposed therethrough with a solderable area (111) disposed thereon. Then, a quantity of solder (113) is disposed onto the solderable area (111), and the assembly (100) is heated so that the solder (113) flows into the vias (106) and (110), thereby providing an electrical connection including the solderable area (111) of the via (110), the solder (113), and the contact area (103). During this reflow step, the structure of the adhesive layer (105) acts as a soldermask preventing the solder (113) from flowing outside of an area defined by the via (106).
Abstract:
Printed circuit board with internal laterally extending electrically conductive element and perpendicularly thereto extending conductive element larger at a pin-receiving level than at the laterally extending conductive element level.
Abstract:
A wiring circuit board includes a metal supporting board; an insulating layer; and a conductive layer in this order in a thickness direction. The conductive layer includes a terminal portion, and a tail line portion extending from the terminal portion. The terminal portion has a via portion that penetrates the insulating layer in the thickness direction and is connected to the metal supporting board. The tail line portion has a base end portion that has a width different from a width of the terminal portion in a direction orthogonal to the extending direction of the tail line portion and that is connected with the terminal portion; and a second via portion that penetrates the insulating layer in the thickness direction and that is connected to the metal supporting board.
Abstract:
There is provided an electronic circuit apparatus in which the heat generated at an electronic component can be transferred to a heat spreader efficiently. An electronic circuit apparatus includes a dielectric substrate, an electronic component, a heat spreader, and a conductive via. The conductive via electrically and thermally connects the electronic component and the heat spreader. The conductive via extends from the first surface to at least an interior of the heat spreader and is in surface-contact with the heat spreader.