Abstract:
A ceramic structural body having electronic components thereon comprises a ceramic package of a ceramic layer having substantially uniform thickness. The package comprises a ceramic element of dish-shaped or box-shaped configuration including a base portion, a sidewall portion extending from the base portion substantially at right angles thereto and a flange portion extending from the free end of the sidewall portion substantially at right angles thereto. The ceramic package is formed by press-forming a ceramic green sheet having substantially uniform thickness. A plurality of metal layers are provided on the surface of desired portions of the ceramic element.
Abstract:
An example device includes a lithium-based battery having conductive battery contacts protruding from a surface of the battery, where a non-conductive potion of the surface of the battery separates the conductive battery contacts. The battery is a type that undergoes an expansion during charging in which the expansion of the lithium-based battery includes an outward bulging of the non-conductive portion of the battery surface. The device includes a substrate having conductive substrate contacts. The conductive battery contacts are electrically connected to the respective conductive substrate contact via a flexible electrically-conductive adhesive that physically separates the conductive battery contacts from the respective conductive substrate contacts and allows for relative movement therebetween caused by the expansion of the lithium-based battery.
Abstract:
Embodiments of the present invention describe a semiconductor package having an embedded die. The semiconductor package comprises a coreless substrate that contains the embedded die. The semiconductor package provides die stacking or package stacking capabilities. Furthermore, embodiments of the present invention describe a method of fabricating the semiconductor package that minimizes assembly costs.
Abstract:
Systems and methods relate to a semiconductor package comprising a first substrate or a 2D passive-on-glass (POG) structure with a passive component and a first set of one or more package pads formed on a face of a glass substrate. The semiconductor package also includes a second or laminate substrate with a second set of one or more package pads formed on a face of the second or laminate substrate. Solder balls are dropped, configured to contact the first set of one or more package pads with the second set of one or more package pads, wherein the first substrate or the 2D POG structure is placed face-up on the face of the second or laminate substrate. A printed circuit board (PCB) can be coupled to a bottom side of the second or laminate substrate.
Abstract:
This patent application describes many novel consumer Internet services which are built on common principles of intelligent hosting, direct trade between individuals and small businesses without middlemen, direct matching of individuals, aggregated persistent search for any commodity or service, and safe electronic commerce and personal communications environment provided by Trusted Net services. This patent application also describes the integration of consumer Internet services into a consumer-centric Internet portal.
Abstract:
A multilayered printed circuit board or a substrate for mounting a semiconductor device includes a semiconductor device, a first resin insulating layer accommodating the semiconductor device, a second resin insulating layer provided on the first resin insulating layer, a conductor circuit provided on the second resin insulating layer, and via holes for electrically connecting the semiconductor device to the conductor circuit, wherein the semiconductor device is accommodated in a recess provided in the first resin insulating layer, and a metal layer for placing the semiconductor device is provided on the bottom face of the recess. A multilayered printed circuit board in which the installed semiconductor device establishes electrical connection through the via holes is provided.
Abstract:
A plating layer of a Cu—M-based alloy (M represents Ni and/or Mn) is formed on an end surface of a connection terminal member at an exposed side, the Cu—M-based alloy being capable of generating an intermetallic compound with an Sn-based low-melting-point metal contained in a bonding material forming a bonding portion and having a lattice constant different from that of the intermetallic compound by 50% or more. In the reflow process, even if the bonding material is about to flow out by re-melting thereof, since the bonding material is brought into contact with the Cu—M-based plating layer, a high-melting-point alloy of the intermetallic compound is formed so as to block the interface between the connection terminal member and the resin layer.