Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of an object are disclosed. Perimeter receiver fiber optics are spaced apart from a source fiber optic and receive light from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a data base.
Abstract:
An electron microscope 10 is adapted to enable spectroscopic analysis of a sample 16. A parabolic mirror 18 has a central aperture 20 through which the electron beam can pass. The mirror 18 focuses laser illumination from a transverse optical path 24 onto the sample, and collects Raman and/or other scattered light, passing it back to an optical system 30. The mirror 18 is retractable (within the vacuum of the electron microscope) by a sliding arm assembly 22.
Abstract:
An optical device includes an optical waveguide through which light propagates and a micro-resonator structure including an optical sensor. The micro-resonator is configured to resonate at a wavelength of light that may be transmitted through the optical waveguide. When light at that wavelength is transmitted through the optical waveguide, it resonates in the resonator and is detected by the optical sensor to produce an electrical signal. The optical resonator may be a micro-cylinder, disc or ring resonator and may be coupled to the waveguide via evanescent coupling or leaky-mode coupling. Multiple resonators may be implemented proximate to the waveguide to allow multiple wavelengths to be detected. When the waveguide is coupled to a tunable laser, signals provided by the optical sensor may be used to tune the wavelength of the laser.
Abstract:
Method and apparatus for analyzing radiation using analyzers and encoders employing the spatial modulation of radiation dispersed by wavelength or imaged along a line.
Abstract:
A curved mirrored surface is used to collect radiation scattered by a sample surface and originating from a normal illumination beam and an oblique illumination beam. The collected radiation is focused to a detector. Scattered radiation originating from the normal and oblique illumination beams may be distinguished by employing radiation at two different wavelengths, by intentionally introducing an offset between the spots illuminated by the two beams or by switching the normal and oblique illumination beams on and off alternately. Beam position error caused by change in sample height may be corrected by detecting specular reflection of an oblique illumination beam and changing the direction of illumination in response thereto. Butterfly-shaped spatial filters may be used in conjunction with curved mirror radiation collectors to restrict detection to certain azimuthal angles.
Abstract:
A produce data collector with minimal spectral distortion. The produce data collector includes a light pipe having entrance and exit ends through which a portion of light reflected from a produce item travels, and a spectrometer adjacent the exit end of the light pipe which splits the portion of light into a plurality of wavelengths and which produces signals associated with the wavelengths for identifying the produce item.
Abstract:
A spectroscopic system for the analysis of small quantities of substances makes use for the purposes of energy transfer of cone-shaped aperture changers which are arranged in the object zone between the light source and the sample and, during absorption measurements, also between the sample and the inlet slot of a spectrometer. A microcell system is provided in the object space. The microcell system comprises a cylindrical cell tube with a hollow core for receiving a sample liquid. The cell tube and the sample liquid being adjustable with respect to the refractive index such that they act as a step waveguide for radiation, the sample liquid forming the core and the wall of the cell tube forming the sheath of the step waveguide.
Abstract:
A colorimeter for measuring colour of process medium comprising two light sources and two detectors both light sources being arranged to emit a beam through the process medium and the windows adjoining the process medium to both detectors. In order to achieve a solution functioning reliably the windows adjoining the process medium at both light sources are formed from a triangular prism, the two surfaces of which being at an angle to each other, are arranged to divide the beam arriving from the light source into two beams travelling in different directions so that both beams proceed to the process medium through the same part of the window surface formed by a third surface of the prism. Mirror surfaces arranged to gather radiation arriving form both light sources to a sensor of the detector are formed at both detectors.
Abstract:
An optical proximity sensor generates information indicative of a distance to an object in a field and in some embodiments also generates information indicative of a spectral reflectance characteristic of the object. The information indicative of the spectral reflectance characteristic can be used to determine whether the object in the field is a living plant or another object such as soil. Light emitted from the optical sensor for reflection off the object is modulated so that reflected light from the optical sensor can be discriminated from reflected ambient sunlight. The optical sensor is scanned over the field to map objects in the field and/or to determine the location of rows of crop plants. A sensor in accordance with the present invention has many uses in agriculture including spraying, cultivation and vehicle guidance.