Abstract:
A microscope spectrometer in which, when an excitation light from a light source illuminates a sample, a light emitted from the sample that enters a microscope is analyzed, may include: a first optical means that forms the light emitted from the sample as a parallel beam; a first variable bandpass filter means having a variable wavelength passband that transmits incident light, which of the parallel beam of incident light, is light of a pre-established wavelength passband; a two-dimensional array light detection means that images the light in the wavelength passband; and a control means that controls the timing of the imaging by the two-dimensional array light detection means and, in accordance with the timing, changes the wavelength passband of the first variable bandpass filter means.
Abstract:
Provided are a spectrometer that may be easily manufactured while having high resolution and sensitivity due to reduced light loss and a non-invasive biometric sensor including the spectrometer. The spectrometer includes: a stacked light absorbing structure including a plurality of absorbing layers stacked in a vertical direction and having different absorption wavelength bands, and a plurality of tunnel junction layers respectively interposed between the plurality of absorbing layers to electrically connect the plurality of absorbing layers; and an illuminating unit configured to provide the stacked light absorbing structure with an illumination light for saturation of the plurality of absorbing layers.
Abstract:
A dual source system and method includes a high power laser used to determine elemental concentrations in a sample and a lower power device used to determine compounds present in the sample. A detector subsystem receives photons from the sample after laser energy from the high power laser strikes the sample and provides a first signal. The detector subsystem then receives photons from the sample after energy from the lower power device strikes the sample and provides a second signal. The high power laser is pulsed and the first signal is processed to determine elemental concentrations present in the sample. The lower power device is energized and the second signal is processed to determine compounds present in the signal. Based on the elemental concentrations and the compounds present, the compounds present in the sample are quantified.
Abstract:
A spatial heterodyne spectrometer may employ an integrated computational element (ICE) to obtain a measure of one or more fluid properties without requiring any moving parts, making it particularly suitable for use in a downhole environment. One illustrative method embodiment includes: directing light from a light source to illuminate a sample; transforming light from the sample into spatial fringe patterns using a dispersive two-beam interferometer; adjusting a spectral weighting of the spatial fringe patterns using an integrated computation element (ICE); focusing spectral-weight-adjusted spatial fringe patterns into combined fringe intensities; detecting the combined fringe intensities; and deriving at least one property of the sample.
Abstract:
A Raman analyzer for analyzing light emitted from a Raman cell is provided that has a beam splitter configured to split the light emitted from the Raman cell into a first beam and a second beam. An atomic vapor filter can be used to filter a Raman scattered line from the first beam and a chopper system can periodically interrupt the first and second beams that are directed towards a photo detector, which can convert light from the first and second beams into an electrical signal. The signal output from the photo detector can optionally be amplified, digitized, Fourier filtered, and/or subjected to Fourier analysis.
Abstract:
A Raman analyzer for analyzing light emitted from a Raman cell is provided that has a beam splitter configured to split the light emitted from the Raman cell into a first beam and a second beam. An atomic vapor filter can be used to filter a Raman scattered line from the first beam and a chopper system can periodically interrupt the first and second beams that are directed towards a photo detector, which can convert light from the first and second beams into an electrical signal. The signal output from the photo detector can optionally be amplified, digitized, Fourier filtered, and/or subjected to Fourier analysis.
Abstract:
A surface enhanced Raman spectroscopy system includes a surface enhanced Raman spectroscopy substrate and a laser source configured to emit light within a spectrum of wavelengths toward a predetermined species on or near the surface enhanced Raman spectroscopy substrate. The system further includes a set of filters positioned to be in optical communication with light scattered after the laser light interacts with the predetermined species. Each of the filters in the set is respectively configured to pass scattered light within a different predetermined narrow band of wavelengths. The system also includes a plurality of photodetectors, where each photodetector is positioned adjacent to a respective one of the filters in the set and is configured to output a signal if the scattered light passes through the respective one of the filters. The set of filters is targeted for detection of characteristic peaks of the predetermined species.
Abstract:
The invention disclosed here teaches methods to fabricate and utilize a non-dispersive holographic wavelength blocker. The invention enables the observation of the Raman signal near the excitation wavelength (˜9 cm−1) with the compactness of standard thin film/holographic notch filter. The novelty is contacting several individual volume holographic blocking notch filter (VHBF) to form one high optical density blocking filter without creating spurious multiple diffractions that degrade the filter performance. Such ultra-narrow-band VHBF can be used in existing compact Raman instruments and thus will help bring high-end research to a greater number of users at a lower cost.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
A detecting device includes a wavelength dispersion element for dispersing light into wavelengths and for emitting dispersed light, a photodetector for detecting the dispersed light, and a wavelength restriction element, which is arranged between the wavelength dispersion element and the photodetector and has an optical characteristic dependent on a wavelength, for restricting an incidence of light having a particular wavelength to the photodetector. Light that is part of the dispersed light and includes the light having has the particular wavelength is incident to the wavelength restriction element.