Abstract:
In the channeled spectroscopic polarimetry, a measurement error of a parameter showing a spectropolarization characteristic of a sample is effectively removed, the error being generated by various variations in retardation of a retarder depending upon the state of the sample. With attention being focused that the retardation of the retarder may be kept constant by stabilization of an incident direction of light that transmits through the retarder, the retarder was arranged on the light source side with respect to the sample so as to effectively remove an influence relative to a measurement error, such as variations in direction of a light ray due to the sample.
Abstract:
A spectrometer includes a substrate; a slit which is provided on the substrate and through which light is incident onto the substrate; a metasurface including nanostructures that is configured to reflect and focus the light incident thereon through the slit, at different angles based on respective wavelengths; and a sensor which is provided on one side of the substrate that is opposite to another side of the substrate at which the metasurface is disposed, and configured to receive the light from the metasurface.
Abstract:
Disclosed herein is an apparatus for spectroscopic ellipsometry, preferably for infrared spectroscopic ellipsometry, and a method for spectroscopic ellipsometry employing the apparatus. In some embodiments, the apparatus may comprise a light source (12), a detector (30), a polarizer (40), an analyzer (41), and a measuring probe (10). In one embodiment, the measuring probe may comprise an ATR prism (50) having at least one first surface having at least one measuring portion (M) configured to be brought in optical contact with a measured object (72), and at least one second surface having at least one reflective portion (RX).
Abstract:
Provided is an optical apparatus characterized in that alight from a light source is split to a first light and a second light, and the first light is focused onto an observation object, that an optical filter having a light shielding region for high resolution is disposed in at least one optical path selected from optical paths of the first light, second light and response light from the observation object, that an interference light formed by causing interference between the response light and the reference light in polarized states different from each other is split to multiple beams, and desired amplitude information signals are obtained from the multiple beams through a phase plate and a polarization plate to increase intensity of the second light, whereby the signal to noise ratio is improved.
Abstract:
A spectrometer for measuring a spectral signature of an object comprises fringe generating optics for use with a camera and a processor. The fringe generating optics are formed of front optics and birefringent optics. The front optics comprises a diffuser adapted to receive light from the object. The birefringent optics is adapted to receive light from the diffuser and to generate interference fringes. The camera is adapted to receive the interference fringes and the processor generates the spectral signature of the object. This spectrometer is an improved Fourier transform spectrometer suitable for use with digital cameras, such as cameras found in mobile devices.
Abstract:
Disclosed is a normal-incidence broadband spectroscopic polarimeter containing reference beam, comprising a light source, a first reflecting unit, a first concentrating unit, a second concentrating unit, a polarizer, a first curved mirror, a first planar mirror, a second reflecting unit and a probing unit. Also disclosed is an optical measurement system, comprising the normal-incidence broadband spectroscopic polarimeter containing reference beam. The normal-incidence broadband spectroscopic polarimeter containing reference beam achieves an integral combination of the light beams after splitting, can maintain the polarization state of the light beams while increasing the light transmission efficiency, and has a low complexity.
Abstract:
A multiband imaging system comprising: an optical module configured for acquiring simultaneously images from a common field-of-view (FOV) scene in a short wavelength spectral band and in a long wavelength spectral band, the optical module comprising a polarizer configured for applying polarization filtering to electromagnetic radiation of the long wavelength spectral band; and a processing module configured to analyze data indicative of received irradiance distribution between the short and long wavelength spectral bands.
Abstract:
A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.
Abstract:
Technologies are generally described for systems and methods for detecting chiral properties of materials and separating materials based on their chiral properties. A chiral vector is constructed from anisotropy properties of a polarization-dependent output signal from a sample. Different types of molecules from the sample can be differentiated based on a magnitude of the chiral vector. Chiral properties of the sample can be detected based on an angle of the chiral vector. The output signal can be a fluorescent emission from the sample and can be used to detect chiral properties of a substantially opaque sample.
Abstract:
A circular dichroism (CD) spectrometer includes an alignment mechanism that automatically adjusts the elements thereof at appropriate positions. The spectrometer has a focusing-lens position-and-orientation adjustment mechanism which adjusts the position and the orientation of the detector-side focusing lens. It also has a detector rotation mechanism which adjusts the orientation of the detector. Firstly, a control PC monitors the CD spectrum of D form of optical enantiomers, and the adjustment mechanism adjusts the focusing lens such that the monitored CD spectrum matches the reference spectrum related to the D form. Next, the control PC moniters CD spectrum of L form of optical enantiomers, and the adjustment mechanism adjusts the focusing lens such that the monitored CD spectrum of the D and L forms become symmetrical. And, the rotation mechanism adjusts the orientation of the detector such that the intensity of the detector signal is maximized.