Abstract:
A method for deriving a background-corrected portion of a measured optical emission spectrum comprising the steps of identifying two or more background correction points from the portion of the measured emission spectrum; deriving a background correction function fitted to the identified background correction points, and applying the background correction function to the portion of the measured emission spectrum so as to produce a background-corrected portion of the emission spectrum, wherein the background correction points are identified from the measured data points by consideration of the gradients between the measured data points.
Abstract:
Intensity of near-ultraviolet light or visible light of 180 to 700 nm emitted from a solid sample, such as an organic semiconductor, irradiated with an electron beam is measured, while kinetic energy (accelerating energy) of the electron beam is changed in a range of 0 to 5 eV so as to obtain a spectrum. Peaks are detected from the spectrum, and the energy thereof is defined as unoccupied-states energy of the sample. The onset energy of the first peak represents electronic affinity energy (electron affinity) of the sample. Since the energy of the electron beam irradiated onto the sample is 5 eV or less, almost no damage is exerted on the sample even when the sample is an organic semiconductor.
Abstract:
A high-frequency input voltage and a high-frequency input current to a series resonant circuit are detected by a voltage detection unit and a current detection unit, respectively, and plasma input power is detected by a plasma input power detection unit based on the detected high-frequency input voltage and high-frequency input current. By directly detecting the plasma input power in this manner, the plasma input power may be accurately controlled regardless of the state of a plasma-generating gas or an analysis sample. Also, use of a switching circuit including a semiconductor device allows an inexpensive configuration compared with a configuration where a vacuum tube or the like is used.
Abstract:
Disclosed herein is a quantitative analysis method for measuring a target element in a specimen using laser-induced plasma spectrum. More particularly, the present invention relates to a method for analyzing a composition ratio of a target element by calculating peak intensities when peaks overlap each other in a spectrum, and a method for selecting a peak of a wavelength at which the highest precision and reproducibility are secured through linearity of a correlation plot of the peak intensities and a value by dividing a standard deviation value of calibration curve data (peak intensity ratios) by a slope when an internal standard method is used for quantitative analysis of a target element.
Abstract:
A device for analyzing at least one oxidizable molten metal using a LIBS technique, including: a LIBS analyzer; a mechanical rotary mechanism stirring a liquid bath of the at least one oxidizable molten metal, and including a central section, to be positioned above the liquid bath of the at least one oxidizable molten metal, including an internal cavity forming an analysis chamber, the central section including a first end connected to the LIBS analyzer, and a plurality of mechanical stirring paddles to be partially submerged in the liquid bath of the at least one oxidizable molten metal and that are connected to a second end of the central section opposite the first end of the central section, the LIBS analyzer configured to allow the surface of the at least one oxidizable molten metal located in the portion plumb with the internal cavity of the central portion to be analyzed.
Abstract:
Provided are a tube-type lens usable for accurately detecting a plasma state in a plasma process, an optical emission spectroscopy (OES) apparatus including the tube-type lens, a plasma monitoring system including the OES apparatus, and a method of manufacturing a semiconductor device by using the plasma monitoring system. The tube-type lens includes: a cylindrical tube; a first lens disposed at an entrance of the cylindrical tube, on which light is incident, the first lens including a central portion which prevents transmission of the light and a second lens disposed at an exit of the cylindrical tube, from which the light exits.
Abstract:
An optical emission spectroscopic (OES) instrument includes a spectrometer, a processor and an adjustable mask controlled by the processor. The adjustable mask defines a portion of an analytical gap imaged by the spectrometer. The instrument automatically adjusts the size and position of an opening in the mask, so the spectrometer images an optimal portion of plasma formed in the analytical gap, thereby improving signal and noise characteristics of the instrument, without requiring tedious and time-consuming manual adjustment of the mask during manufacture or use.
Abstract:
An emission can be obtained from a sample in response to excitation using a specified range of excitation frequencies. Such excitation can include generating a specified chirped waveform and a specified downconversion local oscillator (LO) frequency using a digital-to-analog converter (DAC), upconverting the chirped waveform via mixing the chirped waveform with a specified upconversion LO frequency, frequency multiplying the upconverted chirped waveform to provide a chirped excitation signal for exciting the sample, receiving an emission from sample, the emission elicited at least in part by the chirped excitation signal, and downconverting the received emission via mixing the received emission with a signal based on the specified downconversion LO signal to provide a downconverted emission signal within the bandwidth of an analog-to-digital converter (ADC). The specified chirped waveform can include a first chirped waveform during a first duration, and a second chirped waveform during a second duration.
Abstract:
This invention relates to a system and method to improve the signal to noise ratio (SNR) of optical spectrometers that are limited by nonrandom or fixed pattern noise. A signal from a sample is collected using a short test exposure, a total observation time to maximize SNR is calculated, and the total observation time is achieved by averaging multiple exposures whose time is selected based on the time dependent noise structure of the detector. Moreover, with a priori knowledge of the time dependent noise structure of the spectrometer, this method is easily automatable and can maximize SNR for a spectrum of an unknown compound without any user input.
Abstract:
A stable etching process is realized at an earlier stage by specifying the combination of wavelength and time interval, which exhibits a minimum prediction error of etching processing result within a short period. For this, the combination of wavelength and time interval is generated from wavelength band of plasma emission generated upon etching of the specimen, the prediction error upon prediction of etching process result is calculated with respect to each combination of wavelength and time interval, the wavelength combination is specified based on the calculated prediction error, the prediction error is further calculated by changing the time interval with respect to the specified wavelength combination, and the combination of wavelength and time interval, which exhibits the minimum value of calculated prediction error is selected as the wavelength and the time interval used for predicting the etching processing process.