Abstract:
A method for painting a component, in particular for painting a motor vehicle body component, with a decorative layer is provided. The decorative layer may be a decorative strip, a graphic element, a contrast surface or a pattern. The method includes applying a base coat layer, applying a decorative layer, which is within a decorative region with a limited surface area, to the component, and drying a limited drying region of the component, which drying region comprises at least part of the decorative region.
Abstract:
An ordered structured organic film comprising a plurality of segments and a plurality of linkers arranged as a covalent organic framework, wherein the structured organic film may be a multi-segment thick structured organic film.
Abstract:
A method and equipment to form a digital print by applying dry colorants (7) on a surface (2) of a panel (1), bonding a part of the colorants (7) with a binder (11) and removing the non-bonded colorants (7) from the surface (2).
Abstract:
A method for producing patterned metallic coatings, includes an initiator composition having at least one active substance being added to a substrate. A precursor composition including at least one precursor compound for a metallic layer is applied to the initiator composition coating. A metallic layer is then deposited by the active substance. At least one composition is applied as an emulsion in order to obtain a patterning of the resultant metallic layer.
Abstract:
A method of forming a digital print on a surface (2) by applying powder of dry ink (15) including colorants (7) on the surface, bonding a part of the dry ink (15) powder to the surface (2) by a digital heating print head (80) such that the digital print is formed by the bonded dry ink colorants (7) and removing non-bonded dry ink (15) from the surface (2).
Abstract:
Methods for producing an at least partially cured layer by applying a layer including a (meth)acrylate-functional siloxane to a surface of a substrate, and irradiating the layer in a substantially inert atmosphere with a short wavelength polychromatic ultraviolet light source having a peak intensity at a wavelength of from about 160 nanometers to about 240 nanometers to at least partially cure the layer. Optionally, the layer is at a curing temperature greater than 25° C. In some embodiments, the layer has a thickness of about 0.1 micrometers to about 1 micrometer. In certain embodiments, the layer is substantially free of a photoinitiator and/or an organic solvent. In some particular embodiments, irradiating the layer with a short wavelength polychromatic ultraviolet light source takes place in an inert atmosphere including no greater than 50 ppm oxygen. The substantially cured layer may be a release layer or a low adhesion backsize (LAB).
Abstract:
Coating compositions that provide hydrophilic and self-cleaning properties upon exposure to UV or visible light are disclosed. Coatings can include derivatives of coumarates and/or azobenzene compounds. When exposed to UV or visible light, these compounds isomerize to cis-configuration which are hydrophilic in nature as compared to when in their hydrophobic trans-state.
Abstract:
Production of a triboelectric generator element based on a given dielectric polymer material , provided with a rough surface comprising conical micro-tip shaped structures obtained by means of a heat treatment of the polymer material (FIG. 1C).
Abstract:
The present invention is directed to a process for the manufacture of a multilayer silicone structure of cured silicone elastomer layers wherein the compositions of each of the curable silicone elastomers are chosen such as to provide excellent layer-to-layer adhesion of the said cured silicone elastomer layers, that is, the layers do not suffer form cohesive failure. The multilayer silicone structures may be used for example for the manufacture of electronic devices, coatings, shaped molded articles, laminates etc.
Abstract:
The invention relates to the application of a coating to a substrate in which the coating includes a polymer material and the coating is selectively fluorinated and/or cured to improve the liquid repellance of the same. The invention also provides for the selective fluorination and/or curing of selected areas of the coating thus, when completed, providing a coating which has regions of improved liquid repellance with respect to the remaining regions and which remaining regions may be utilized as liquid collection areas.