Abstract:
A method for forming a film that covers a side wall of a through hole in a substrate having the through hole, the method including, in the following order, the steps of providing a substrate having a through hole that passes therethrough from a first surface to a second surface, which is a surface opposite to the first surface, forming, on the first surface, a lid member that blocks an opening of the through hole open on the first surface, recessing, in a direction away from the first surface, a surface of the lid member that blocks the opening by removing part of the lid member through the opening, and forming a film that covers the side wall of the through hole.
Abstract:
One example includes an integrated circuit including at least one electrical interconnects disposed on an elongate are extending away from a main portion of the integrated circuit and a microelectromechanical layer including an oscillating portion, the microelectromechanical layer coupled to the main portion of the integrated circuit, wherein the microelectromechanical layer includes a cap comprising a membrane that extends to the integrated circuit.
Abstract:
A process for fabricating a symmetrical MEMS accelerometer. A pair of half parts is fabricated by, for each half part: (i) forming a plurality of resilient beams, first connecting parts, second connecting parts, and a plurality of comb structures, by etching a plurality of holes on a bottom surface of a first silicon wafer; (ii) etching a plurality of hollowed parts on a top surface of a second silicon wafer; (iii) forming a silicon dioxide layer on the top and bottom surface of the second silicon wafer; (iv) bonding the bottom surface of the first silicon wafer with the top surface of the second silicon wafer; (v) depositing a layer of silicon nitride on the bottom surface of the second silicon wafer, and removing parts of the silicon nitride layer and silicon dioxide layer on the bottom surface of the second silicon wafer; (vii) deep etching the exposed parts of the bottom surface of the second silicon wafer to the silicon dioxide layer located on the top surface of the second silicon wafer, and reducing the thickness of the first silicon wafer; and (viii) removing the silicon nitride layer, and etching the silicon dioxide to form the mass. The two half parts are then bonded along their bottom surface. The device is deep etched to form a movable accelerometer. A bottom cap is fabricated by hollowing out the corresponding area, and depositing metal as electrodes. The accelerometer is bonded with the bottom cap. Metal is deposited on the first silicon wafer to form electrodes.
Abstract:
A sensor device is constructed to maintain a high glass strength to avoid the glass failure at low burst pressure, resulting from the sawing defects located in the critical high stress area of the glass pedestal as one of the materials used for construction of the sensor. This is achieved by forming polished recess structures in the critical high stress areas of the sawing street area. The sensor device is also constructed to have a robust bonding with the die attach material by creating a plurality of micro-posts on the mounting surface of the glass pedestal.
Abstract:
Integrated MEMS-CMOS devices and integrated circuits with MEMS devices and CMOS devices are provided. An exemplary integrated MEMS-CMOS device is vertically integrated and includes a substrate having a first side and a second side opposite the first side. Further, the exemplary vertically integrated MEMS-CMOS device includes a CMOS device located in and/or over the first side of the substrate. Also, the exemplary vertically integrated MEMS-CMOS device includes a MEMS device located in and/or under the second side of the substrate.
Abstract:
There is provided a method for forming a composite cavity and a composite cavity formed using the method. The method comprises the following steps: providing a silicon substrate (101); forming an oxide layer on the front side thereof; patterning the oxide layer to form one or more grooves (103), the position of the groove (103) corresponding to the position of small cavity (109) to be formed; providing a bonding wafer (104), which is bonded to the patterned oxide layer to form one or more closed micro-cavity structures (105) between the silicon substrate (101) and the bonding wafer (104); forming a protective film (106) over the bonding wafer (104) and forming a masking layer (107) on the back side of the silicon substrate (101); patterning the masking layer (107), the pattern of the masking layer (107) corresponding to the position of a large cavity (108) to be formed; using the masking layer (107) as a mask, etching the silicon substrate (101) from the back side until the oxide layer at the front side thereof to form the large cavity (108) in the silicon substrate (101); and using the masking layer (107) and the oxide layer as a mask, etching the bonding wafer (104) from the back side through the silicon substrate (101) until the protective film (106) thereover to form one or more small cavities (109) in the bonding wafer (104). The uniformity of thickness of the semiconductor medium layer where the small cavity (109) in the composite cavity is located is well controlled by the present invention.
Abstract:
An electronic device includes a first base body, a second base body, a third base body held between the first base body and the second base body, a first functional element disposed in a first cavity surrounded by the first base body and the third base body, and a second functional element disposed in a second cavity surrounded by the second base body and the third base body.
Abstract:
Structures, materials, and methods to control the spread of a solder material or other flowable conductive material in electronic and/or electromagnetic devices are provided.
Abstract:
Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
Abstract:
Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.