Abstract:
The invention relates to a spectrophotometer, especially a spectrophotometer that can carry out simultaneous analysis at different points on the same sample (4), with a high spatial resolution and without requiring a mechanical system for physical scanning along the sample. This is obtained by the provision of means for processing the light received by the photodetectors (5), said processing means having a correlation wherein each of the photodetectors (5) corresponds to a spatial point on the sample (4).In the case of dark field applications, the present invention ensures the standardization of the data using the same measure.
Abstract:
Provided are methods and systems for concurrent imaging at multiple wavelengths. In one aspect, a hyperspectral/multispectral imaging device includes a lens configured to receive light backscattered by an object, a plurality of photo-sensors, a plurality of bandpass filters covering respective photo-sensors, where each bandpass filter is configured to allow a different respective spectral band to pass through the filter, and a plurality of beam splitters in optical communication with the lens and the photo-sensors, where each beam splitter splits the light received by the lens into a plurality of optical paths, each path configured to direct light to a corresponding photo-sensor through the bandpass filter corresponding to the respective photo-sensor.
Abstract:
Systems and methods for extracting topographic information from inspected objects to identify defects in the inspected objects. A part to be inspected is illuminated with at least two different colors emitted from an illuminator providing a gradient of light consisting of the at least two different colors. A single color image of the illuminated part to be inspected is acquired, providing a color-coded topographic mapping of the part to be inspected due, at least in part, to the gradient of light. Topographic monochrome views of the part to be inspected may be generated from the single color image. Each view of the topographic monochrome views may enhance a different type of feature or defect present in the part to be inspected which can be analyzed and detected.
Abstract:
A laser ablation tomography system includes a specimen stage for supporting a specimen. A specimen axis is defined such that a specimen disposed generally on the axis may be imaged. A laser system is operable to produce a laser sheet in a plane intersecting the specimen axis and generally perpendicular thereto. An imaging system is operable to image the area where the laser sheet intersects the specimen axis.
Abstract:
Systems and techniques for optical spectrometer detection using, for example, IR spectroscopy components and Raman spectroscopy components are described. For instance, a system includes a first electromagnetic radiation source configured to illuminate a sample with a first portion of electromagnetic radiation in a first region of the electromagnetic spectrum (e.g., an IR source) and a second electromagnetic radiation source configured to illuminate a sample with a second portion of electromagnetic radiation in a second substantially monochromatic region of the electromagnetic spectrum (e.g., a laser source). The system also includes a detector module configured to detect a sample constituent of a sample by analyzing a characteristic of electromagnetic radiation reflected from the sample associated with the first electromagnetic radiation source and a characteristic of electromagnetic radiation reflected from the sample associated with the second electromagnetic radiation source.
Abstract:
Raman spectroscopy apparatuses are described that detect the spectral characteristics of a sample wherein the apparatus consists of a multiplicity of modulated discrete light sources adapted to excite a sample with electromagnetic radiation, a filter adapted to isolate a predetermined wavelength emitted by the sample wherein the wavelength is further modulated at different frequencies, and a detector for detecting the isolated wavelength. The apparatus may further consist of an interferometer, such as a Michelson interferometer, adapted to modulate the excitation energy. Also provided herein are methods, systems, and kits incorporating the Raman spectroscopy apparatus.
Abstract:
A radiation generation device for generating resulting electromagnetic radiation having an adjustable spectral composition includes: a multitude of radiation elements (configured to generate a radiation element specific electromagnetic radiation, respectively, upon being activated, a first radiation element of the multitude of radiation elements being activatable independently of a second radiation element of the multitude of radiation elements; a dispersive optical element; and an optical opening; the dispersive optical element being configured to deflect the radiation element specific electromagnetic radiations, in dependence on their wavelength and on a position of the radiation element generating the respective radiation element specific electromagnetic radiation, such that a particular spectral range of each of the radiation element specific electromagnetic radiations may exit through the optical opening, so that the spectral composition of the resulting electromagnetic radiation exiting through the optical opening is adjustable by selectively activating the multitude of radiation elements.
Abstract:
The invention relates to a spectrophotometer having a light source capable of alternatively producing near infrared radiation and another radiation other than the near infrared radiation, a dispersing section for dispersing radiation from the light source to provide substantially monochromatic radiation so that a sample is irradiated with the substantially monochromatic radiation to thereby provide sample radiation, and a sensing section for sensing the sample radiation. The sample radiation is subjected to energy absorption of a specific wavelength by the sample. The sensing section includes a first sensing unit having a near infrared radiation sensor, a second sensing unit having a visible/ultraviolet radiation sensor and a temperature control unit for holding the near infrared radiation sensor at a substantially constant temperature lower than the room temperature.
Abstract:
A device for measuring optical spectra at high speed and with high resolution using tunable optical laser comb sources. In one embodiment there is provided a first tunable comb laser source and a second tunable comb laser source whereby the wavelength of each comb laser source is chosen such that the combination of the two sources provides a continuous spectral coverage over a band in an optical spectrum under a selected wavelength tuning condition. By overlapping the two comb sources in the manner described the deadzone issue is overcome in the most spectrally efficient way possible.
Abstract:
In a Raman microscope, a depth measurement processor performs depth measurement by changing a focal position of laser light along a depth direction of a sample which is an irradiation direction of the laser light with respect to the sample, and meanwhile, acquiring a Raman spectrum of the sample at a plurality of points in the depth direction. The display processor causes Raman spectra obtained at the plurality of points by the depth measurement to be displayed. The display processor can display a surface image of the sample on the stage and a depth image representing a plurality of points in the depth direction and causes, in a case where at least one point of the plurality of points in the depth image is selected, the Raman spectrum corresponding to the at least one point to be displayed.