Abstract:
According to exemplary embodiments, a tapered surface interconnect is formed on a printed circuit board (PCB). A compliant pin of an electrical connector may be coupled to the tapered surface interconnect and soldered thereto. The surface interconnect may be formed by drilling through one or more layers of the PCB. The depth of the surface interconnect may be shorter than a height or a thickness of the PCB. The surface interconnect may have a tapered side wall to allow for a better fit with a tapered compliant pin. The inclination of the side wall of the surface interconnect may be linear or concave. The intersection between the tapered sidewall and the bottom of the surface interconnect may be rounded to minimize pin insertion issues and may allow for easier solder flux evacuation. The compliant pin may be soldered into place upon being coupled to the tapered surface interconnect.
Abstract:
An electronic apparatus is provided including a substrate, a conductive land formed on a surface of the substrate, an electronic component including an electrode, at least one insulating protrusion formed on the land in an overlapping region between the land and the electrode in plan view, and a solder that bonds the electronic component to the land, the solder being formed between the electrode and the land in the overlapping region in a normal direction to the surface of the substrate.
Abstract:
An electronic device having a printed circuit board is provided. In one embodiment, the printed circuit board includes a plurality of external pads to be coupled with an external device and a plurality of bypass pads for testing an electric circuit. The external pads are exposed and at least one of the plurality of bypass pads are not exposed from an outer surface of the PCB. A system using the electronic device and a method of testing an electronic device are also provided.
Abstract:
A manufacturing method for a component incorporated substrate according to the present invention includes positioning an electronic component with reference to a mark formed on a copper layer, the mark consisting of a material less easily etched than copper by a copper etching agent used for etching of copper, after mounting the electronic component on the copper layer with an adhesive layer interposed therebetween, embedding the electronic component and the mark in an insulating substrate, thereafter, etching and removing a part of the copper layer to form a window for exposing the mark, forming an LVH reaching a terminal of the electronic component with reference to the exposed mark, electrically connecting the terminal and the copper layer via a conduction via formed by applying copper plating to the LVH, and, thereafter, forming the copper layer into a wiring pattern.
Abstract:
The present disclosure relates to a semiconductor substrate, a semiconductor module and a method for manufacturing the same. The semiconductor substrate includes a first dielectric structure, a second dielectric structure, a first patterned conductive layer and a second patterned conductive layer. The first dielectric structure has a first surface and a second surface opposite the first surface. The second dielectric structure has a third surface and a fourth surface opposite the third surface, where the fourth surface is adjacent to the first surface. The second dielectric structure defines a through hole extending from the third surface to the fourth surface. A cavity is defined by the through hole and the first dielectric structure. The first patterned conductive layer is disposed on the first surface of the first dielectric structure. The second patterned conductive layer is disposed on the second surface of the first dielectric structure.
Abstract:
Disclosed is a printed circuit board including an insulating layer, a circuit layer formed on a lower surface of the insulating layer, and a metal post contacting the circuit layer and extending from the lower surface to an upper surface of the insulating layer. The printed circuit board is able to prevent shorts while components are mounted by forming a metal post to have a secured height tolerance to connect with a die and to be in a caved shape into the board.
Abstract:
An electronic device having a printed circuit board is provided. In one embodiment, the printed circuit board includes a plurality of external pads to be coupled with an external device and a plurality of bypass pads for testing an electric circuit. The external pads are exposed and at least one of the plurality of bypass pads are not exposed from an outer surface of the PCB. A system using the electronic device and a method of testing an electronic device are also provided.
Abstract:
A printed circuit board and method of manufacturing the same are provided. The printed circuit board includes a first substrate including a first insulation layer and a first circuit layer including a bonding pad, the bonding pad disposed on the first insulation layer, a second substrate disposed on the first substrate and having a cavity exposing the bonding pad to an outside, and a dam disposed between the bonding pad and an inner wall of the cavity.
Abstract:
In a method for manufacturing a multilayer substrate, conductive patterns to define mounting electrodes are formed on a principal surface of a first base layer, and conductive patterns are formed on principal surfaces of other base layers. The base layers are stacked such that the principal surface of the first base layer is the outermost surface. The stacked base layers are laminated by pressing an elastic body to the side of the first base layer to form a multilayer body. In the multilayer body, the conductive patterns are arranged such that the proportion of the conductive patterns in regions overlapping the conductive patterns on the first base layer as viewed in the stacking direction is lower than that in a region surrounding the regions overlapping the conductive patterns.
Abstract:
The flexible printed circuit board includes a base layer, a first circuit layer and a second circuit layer, the first circuit and the second circuit layer formed on both sides of the base layer; conducting holes extending through the base layer and the first copper layer, the conducting holes include annular copper ring embedded in the first circuit layer. A height difference between a surface of the annular copper ring and a surface of the first circuit layer is in a range from 0 to 3 micrometers. A method for manufacturing the flexible printed circuit board is also provided.