Abstract:
A substrate strip is provided. The substrate strip includes a core layer including first and second substrate regions spaced apart from each other and a dummy region between the first and second substrate regions, a first interconnection layer disposed on top surfaces of the first and second substrate regions, a second interconnection layer disposed on bottom surfaces of the first and second substrate regions, and a warpage control member provided on any one of a top surface and a bottom surface of the dummy region. The warpage control member includes a metal.
Abstract:
A self-healing wire includes, an electric wire arranged on a substrate, and a hybrid structure in which the electric wire is covered with at least one fluid selected from the group consisting of a fluid having conductive particles dispersed therein and a fluid having metal ions dissolved therein, formed on a healing portion for a crack to be generated in the electric wire. And a stretchable device includes the self-healing wire formed on a stretchable base material and an electric element mounted only on a base material higher in rigidity than the stretchable base material. Even when a crack is generated in the electric wire due to stretching of the substrate having flexibility, the crack is bridged by the conductive particles or a solid metal deposited from the metal ions in the fluid. Thus the self-healing wire and the stretchable device having both high conductivity and high stretchability are provided.
Abstract:
Electronic devices may be provided that include mechanical and electronic components. Connectors may be used to interconnect printed circuits and devices mounted to printed circuits. Printed circuits may include rigid printed circuit boards and flexible printed circuit boards. Heat sinks and other thermally conductive structures may be used to remove excess component heat. Structures may also be provided in an electronic device to detect moisture. Integrated circuits and other circuitry may be mounted on a printed circuit board under a radio-frequency shielding can.
Abstract:
A substrate reinforcing structure for preventing and suppressing deformation or the like of a substrate with a fixed electric component socket.A first reinforcing plate in, for example, a frame shape is attached to a back surface of a wiring board. Further, a second reinforcing plate in, for example, a flat shape is provided on a back side of the first reinforcing plate. In a preferred embodiment of the present invention, a first insulating sheet is further provided between the wiring board and the first reinforcing plate, and a spacer is provided on the second reinforcing plate and abutted to a part of the wiring board where contact pins do not protrude. A second insulating sheet is further provided on the second reinforcing plate.
Abstract:
An image reading device which reads an image to obtain an image signal includes: a scanning unit; a chassis member; a control unit provided in a position which does not move together with the scanning unit; and a flexible flat cable which connects the scanning unit to the control unit, includes one end attached to a side of the chassis member and a position other than the one end fixed to a position which does not move with the scanning unit, includes a range closer to the one end than the fixed position parallel to a moving direction of the scanning unit, and is arranged to extend from the one end to one side, be bent into a U-shape, enter between the scanning unit and the chassis member, and reach the fixed position, and the flexible flat cable includes a transmitting layer, a shielding layer, and a stress adjusting layer.
Abstract:
A socket (female connector) used for a connector assembly includes a film substrate constituted by a flexible thin board made of insulation material. The film substrate is provided with connection through holes adapted to be inserted therein connection posts of a header (male connector). Connection pads are formed on a first surface of the film substrate around respective connection through holes. The connection pads include a first pad and a second pad. The film substrate is provided on the first surface with a first patterned conductor connected to the first pad and a third patterned conductor connected to the second pad. The third patterned conductor is connected to a second patterned conductor formed on a second surface of the film substrate by means of a blind via that is formed by boring the film substrate from the second surface so as to reach the third patterned conductor.
Abstract:
A flexible printed circuit board having enhanced peeling force and a touch panel including the same are provided. The flexible printed circuit board (FPCB) includes a first bonding portion and a second bonding portion respectively bonded to a first circuit unit and a second circuit unit. The first bonding portion includes a pad corresponding portion corresponding to pads of the first circuit unit and dummy portions outwardly extending from both end portions of the pad corresponding portion. An FPCB wiring formation portion includes FPCB wirings respectively connected to the pads and extending from the first bonding portion to the second bonding portion and concave portions respectively disposed to be adjacent to the dummy portions and having a curved surface.
Abstract:
A wiring structure of a head suspension including a flexure that supports a head and is attached to a load beam applying load onto the head, comprises write wiring and read wiring formed on the flexure and connected to the head, each having wires of opposite polarities. The wiring structure further comprises a stacked interleaved part includes segments electrically connected to the respective wires of the write wiring, the segments stacked on and facing the wires through an electrical insulating layer so that the facing wire and segment have opposite polarities.
Abstract:
An electronic circuit unit in which a mold exclusion part, having a rear surface side covered by mold resin and a front surface side exposed from an outer case, is provided at a part of a plate surface of a circuit board which is mounted with electronic components and is covered by the outer case formed by the mold resin. The outer case is multi-material molded using plural kinds of resin having different fluidities. A rear wall of the outer case located on the rear surface side of the mold exclusion part is made of one of the plural kinds of the resin having a fluidity higher than a fluidity of another one of the plural kinds of the resin constituting the other portion of the outer case.
Abstract:
This invention provides an affixing structure that reduces costs and makes it possible to lower the risk of vibration causing damage or the like to electrical connection terminals on an electronic component affixed to a circuit board. The affixing structure, which is affixed to a circuit board (21) via a plurality of lead frames (55) that are part of a transformer (50), is characterized in that at least one second side wall that is perpendicular to a first side wall where the lead frames (55) are arranged is adhesively supported on the circuit board (21) by a support (60), the height (H3) of the part of the support (60) in contact with the transformer (50) is greater than or equal to the height (H2) of the center of gravity of the electronic component, and the length (L) of the support (60) in the direction of the first side wall is greater than or equal to the aforementioned height (H3).