Abstract:
A system contains a temperature sensitive device and a printed circuit board. The temperature sensitive device is coupled to the printed circuit board. An aperture is cut out of the printed circuit board between the temperature sensitive device and a heat generating device to act as an insulator for the temperature sensitive device.
Abstract:
In one embodiment of the present invention, a connecting device of a double-sided wiring board includes a first-side connecting land portion configured by a first-side conductive layer and a first-side connecting conductive layer and a second-side connecting land portion configured by a second-side conductive layer; the first-side connecting land portion and the second-side connecting land portion face each other at respective central portions with an insulating substrate sandwiched therebetween; a substrate hole is formed corresponding to a peripheral end portion of the first-side connecting land portion and a peripheral end portion of the second-side connecting land portion; and the peripheral end portion of the first-side connecting land portion and the peripheral end portion of the second-side connecting land portion are connected to each other via the substrate hole.
Abstract:
A method of enhancing adhesion of a molding material with a substrate is provided. The method includes forming one or more perforations on a substrate, forming a coat of an affinitive material on at least one of the perforations, and filling the molding material in the perforations. The affinitive material has an affinity for the molding material. Therefore, the molding material adheres to the coat of the affinitive material.
Abstract:
An electronically commutated motor (ECM 21) has reduced vulnerability to Electro-Static Discharge (ESD). The motor has an internal stator (50) and an external rotor (22) equipped with a permanent magnet (28), which rotor is separated by an air gap from the internal stator (50). The rotor has a shaft (34) on which a magnetic yoke element (24) is mounted. A leakage flux region on an end face (27) of the magnet (28) actuates a Hall sensor (48) located adjacent a first aperture (48′) in a circuit board (46) supporting electronic control components. In order to prevent static discharges from passing through the first aperture (48′) and endangering the electronic components, the circuit board (46) is formed with a second aperture (43) on whose edge is provided at least one electrical conductor (95′, 95″), connected to ground (112), to which any charge that builds up during operation can harmlessly discharge.
Abstract:
Disclosed are an electronic component, an assembly of an electronic component and an electronic carrier substrate, and a method of connecting the electronic component to the carrier substrate. The carrier substrate has a first coefficient of thermal expansion (CTE), and the electronic component has a second CTE. The assembly further comprises a conductive material on the carrier substrate for connecting the electronic component to the carrier substrate, and the electrical component is connected to the carrier substrate by heating and then cooling this conductive material. The electronic component includes an expansion joint to allow the electronic component to expand and contract relative to the carrier substrate during the heating and cooling of the conductive material.
Abstract:
An electrical connection structure allowing reduction in height and easy disassembly, wherein a first connecting member comprises a flexible substrate comprising a flexible insulating film, at least one conductive pad formed on at least one side thereof, a conductive circuit pattern extending from the rim of the pad, a through-hole formed through the thickness thereof at a planar position within the pad, and a small aperture formed at a planar position within the pad and communicating with the through-hole, and a second connecting member comprises a conductive projection formed at least one side thereof and electrically connected with a conductive circuit pattern formed inside or on the second connecting member, where the electrical connection is formed in the manner such that the conductive projection of the second connecting member is inserted in the through-hole of the first connecting member, through the small aperture in the pad, bending the pad and the portion of the insulating film under the pad, along the direction of insertion of the conductive projection, so that the pad is pressed onto the conductive projection due to elastic force of the pad and the insulating film bent.
Abstract:
A light circuit manufacturing process includes forming a palletized driver PCB board having a plurality of driver PCBs, forming a plurality of power PCBs on a palletized surface, forming slots in the driver PCBs, forming holes in the power PCBs, aligning both the power PCB palletization and the driver PCB palletization using reference holes such that the edges of each extend further in one direction or the other, and inserting thermal tabs into both the power PCB and the driver PCB.
Abstract:
The present invention relates to a bendable printed board, an image pickup apparatus, and a camera. The bendable printed board is provided with: a first end connected to a moving body movable in an arbitral direction within a predefined plane; a second end connected to a fixed body with slack providing movability to the moving body; and a slit formed on at least a part of a slack portion of the printed board.
Abstract:
A microelectronic package includes a microelectronic element having faces and contacts, a flexible substrate overlying and spaced from a first face of the microelectronic element, and a plurality of conductive terminals exposed at a surface of the flexible substrate. The conductive terminals are electrically interconnected with the microelectronic element and the flexible substrate includes a gap extending at least partially around at least one of the conductive terminals. In certain embodiments, the package includes a support layer, such as a compliant layer, disposed between the first face of the microelectronic element and the flexible substrate. In other embodiments, the support layer includes at least one opening that is at least partially aligned with one of the conductive terminals.
Abstract:
A panel module for an LCD device has an LCD panel including a TFT panel and a counter panel, signal line and scanning line drive boards for connecting to external circuits, and TCPs connecting together the TFT panel and the drive boards. The signal line driver TCP has a plurality of slits in the film substrate thereof and bent at the slits, allow the signal line drive board to be located on the rear side of the backlight unit of the LCD device. The panel module is suited any of stacked, L-shaped or U-shaped board structure.