Abstract:
The invention concerns in particular a method for depositing a nanometric multilayer thin film on a substrate from a liquid solution containing at least one surfactant. The method includes the following steps: forming a film from the solution; contacting the substrate; and depositing the film on the substrate. The invention is particularly formed to enable depositing black films on different types of surfaces, in particular for obtaining highly organized films. The films obtained by the method are particularly useful in electronics and optics.
Abstract:
In order to provide the high sensitivity SERS active substrates needed for rapid and sensitive chemical/biological agent detection, the present invention provides a Plasmonic Nano-antenna Array (PNA) substrate with large local electromagnetic field enhancements; a controllable and repeatable nano-fabrication process for creating the PNA surface; and a system design for a compact, portable device capable of using the PNA technology to acquire and analyze target molecular samples. Both 2D and 3D systems are provided.
Abstract:
The invention addressed a difficult problem in the conventional methods and has its object to provide an organic thin film with flexibility and high strength to be a support for a molecule, with which a biomolecular element or a molecule such as a membrane protein as a biosensor can function equally in a living body, and a method for producing the same. In this invention, the organic thin film to be a support for the biomolecular element or the biosensor molecule is produced by forming a layer of lipid molecules on a layer of fatty acid molecules which is a primary thin film layer formed on an inorganic substrate. Further, by the selection and combination of fatty acid molecules, a thin film structure with a characteristic pattern structure can be obtained.
Abstract:
The present disclosure provides various novel suspended planar lipid bilayer assemblies made from bicellar mixtures containing long and short chain phospholipids and methods of making the same. Such bilayer assemblies may additionally incorporate biomolecules such as proteins, polypeptides, biological complexes, transmembrane proteins and other membrane-associated compounds. The present disclosure further provides uses for such lipid bilayer assemblies including proteomics, membrane study, biosensing for medical diagnosis and environmental monitoring, chemical and biological warfare agent sequestration, actuator development, and bio-fuel cell development.
Abstract:
Langmuir-Blodgett films are provided in which a molecule is chemically bonded with a bottom electrode substrate as part of a crossed wire device comprising two electrodes and a molecular layer therebetween. The molecule, which comprises a switchable moiety and a connecting moiety, is provided with a photolabile capping group attached to the connecting moiety. The photolabile capping group temporarily caps the reactive connecting group of the molecule. The capped molecules are processed to form a LB film on the water-air interface of water. The films are then exposed to UV light. The photolabile capping group decomposes to give back the connecting group, which remains in the water. As the uncapped LB films are transferred to a bottom electrode substrate, the surface of the electrode reacts with the reactive connecting group of the molecule to form a chemically bonded LB layer on the substrate, thereby providing improved LB films.
Abstract:
A method is disclosed of three-dimensional (3D) free-form printing for coating free-form objects, the method including: arranging a free-form object in a Langmuir-Blodgett (LB) trough filed with a liquid, the LB trough designed based on a shape of the free-form object; arranging an LB film comprising a plurality of colloidal nanospheres on a surface of the liquid within the LB trough; and draining the liquid from the LB trough to form a self-assemble film of the colloidal nanoparticles on a surface of the free-form object.
Abstract:
In an example, a method including dispensing a liquid onto a first portion of a surface of a substrate and dispensing a solution comprising colloidal spheres onto a second portion of the surface of the substrate. The method additionally includes agitating the colloidal spheres to disperse the colloidal spheres along the first portion and the second portion of the surface of the substrate and directing air flow above the colloidal spheres inducing rotation of the colloidal spheres. In another example, a method includes positioning a retaining ring on a surface of a liquid above a substrate below the surface of the liquid and dispensing a solution comprising colloidal spheres onto the surface of the liquid within a surface area of the retaining ring. The method further includes agitating the surface of the liquid and the colloidal spheres to disperse the colloidal spheres along the surface area of the retaining ring.
Abstract:
The present disclosure is directed to methods for preparing nanoparticle monolayers on a sub-phase by controlling the spreading rate of the nanoparticles. The nanoparticles are first prepared in a nanoparticle solution at a predetermined concentration with a solvent. The sub-phase solution is prepared to have a density and viscosity compatible with the desired spreading rate. Additives, such as glycerol, are used to alter the density of the sub-phase solution. A volume of nanoparticle solution is deposited on the surface of the sub-phase solution and allowed to spread in a controlled manner on the unconstrained surface, forming a uniform nanoparticle monolayer. A substrate is then placed in contact with the nanoparticle monolayer to form a uniform nanoparticle coating on the surface of the substrate.
Abstract:
A process for depositing a compact film of particles on an internal surface of a part, including: a) placing the part in a carrier liquid; b) generating a carrier liquid stream in a hollow of the part towards a surface of the carrier liquid, to create a protuberance; c) dispensing the particles to form a compact film floating on the liquid between a contact line and an upstream front of particles; and d) transferring the film onto the internal surface by operating a relative displacement between the part and the surface of the carrier liquid, while continuing dispensing the particles on the upstream front.
Abstract:
An installation for forming a compact film of particles on a surface of a carrier fluid, including: a zone acting as a reservoir of carrier fluid; an inclined ramp; a particle storage and transfer zone situated extending from the inclined ramp; a mechanism moving the fluid; a mechanism dispensing the particles in solution, configured to dispense the particles at the surface of the carrier on the surface of the carrier fluid in the zone acting as a reservoir; and a mechanism raising a level of the carrier fluid by capillary effect, arranged at a junction between the zone acting as a reservoir and the inclined ramp.