Abstract:
A method for producing a reflection-reducing layer system on a substrate and a reflection-reducing layer system are disclosed. According to an embodiment the method includes depositing a refractive index gradient layer on the substrate by co-evaporation of an inorganic material and an organic material, wherein the refractive index gradient layer has a refractive index which decreases in a growth direction, depositing an organic layer above the refractive index gradient layer, and producing a nanostructure in the organic layer by a plasma etching process.
Abstract:
A resin composition for forming a phase-separated structure includes a block copolymer having a block (b1) having a repeating structure of styrene units; a block (b2) having a repeating structure of methyl methacrylate units partially substituted with a constituent unit represented by general formula (h1); and a number average molecular weight of less than 28,000. In general formula (h1), Rh0 is a hydrophilic functional group.
Abstract:
The present invention is: a gas barrier laminate comprising a base material and a gas barrier unit, wherein the gas barrier unit comprises a gas barrier layer (1) disposed on the base material side, and a gas barrier layer (2) disposed on a surface side of the gas barrier layer (1) opposite to the base material side, and a thickness of the gas barrier unit is 170 nm to 10 μm; an electronic device member comprising the gas barrier laminate; and an electronic device comprising the electronic device member. The present invention provides: a gas barrier laminate having excellent gas barrier properties and excellent colorlessness and transparency, an electronic device member comprising this gas barrier laminate, and an electronic device comprising this electronic device member.
Abstract:
A surface-treated carbon fiber having a mole ratio between a carboxyl group and an acid anhydride of 50:50 to 70:30 when measured by pyrolysis gas analysis, is manufactured by spraying a reactive gas that has been made into a plasma onto the surface of a carbon fiber and introducing a functional group into the surface of the carbon fiber.
Abstract:
The present disclosure concerns a membrane for a sensor, such as an opto-chemical or electrochemical sensor, including a polymer layer, for example, one featuring pores or openings, that is permeable to a measuring fluid and/or an analyte contained in the measuring fluid, with a surface designed to be in contact with a measuring fluid, wherein the surface is designed such that, at least in a moist condition of the polymer layer obtained by moistening the surface, a contact angle of a water drop applied to the surface is less than 50°, including less than 30°, and including less than 10°.
Abstract:
A graphene electrode, an energy storage device employing the same, and a method for fabricating the same are provided. The graphene electrode includes a metal foil, a non-doped graphene layer, and a hetero-atom doped graphene layer. Particularly, the hetero-atom doped graphene layer is separated from the metal foil by the non-doped graphene layer.
Abstract:
Disclosed herein is a method for manufacturing a fabric substrate for a flexible display. According to the present invention, the method comprises the steps of preparing step for preparing a fabric substrate, calendering step for thermal stability and dimensional stability of the fabric substrate, a first coating step for coating a first planarization layer for planarizing the calendered fabric substrate, a plasma processing step for processing plasma to the first planarization layer, and a second coating step for coating a second planarization layer on the plasma-processed first planarization layer.
Abstract:
The invention relates to a lubricant coating (5) for a medical injection device (1), comprising successively: —a bottom layer (50) in contact with the medical device surface (21) of the container to be lubricated, comprising a mixture of cross-linked and non-cross-linked poly-(dimethylsiloxane), —an intermediate layer (51) consisting essentially of oxidized poly-(dimethylsiloxane) and having a thickness comprised between 10 and 30 nm and, —a top layer (52) consisting essentially of non-cross-linked poly-(dimethylsiloxane) and having a thickness of at most 2 nm. The invention also relates to a medical injection device comprising such a lubricant coating, and a manufacturing process for said coating.
Abstract:
To minimize contamination and improve cleanability of an apparatus for electrostatically coating workpieces, the external surfaces of the apparatus are coated with a hydrophobic and hard coating.
Abstract:
A method for improving the adhesion characteristics of a secondary coating to a coated substrate material using a corona or plasma discharge treatment, in which the treatment is limited to a finite duration of time sufficient to increase the surface energy of the coated substrate above that of the secondary coating but insufficient to cause a loss or diminishment of the adhesion between any layers of coating of the coated substrate material or between the bottommost layer of the coating and the bare substrate. A secondary coating is applied to the treated substrate and at a desired thickness and cured or dried, depending upon its composition. The limited duration discharge treatment functions to improve the adhesion of the secondary coating to the coated substrate material without adversely affecting any previously applied coating layers.