Abstract:
The invention comprises a method and apparatus for sampling a common tissue volume and/or a common skin layer skin of a person as a part of noninvasive analyte property determination system, comprising the steps of: providing an analyzer, comprising at least three detectors at least partially embedded in a probe housing, the probe housing comprising a sample side surface, the detectors including a first and second range of detection zones of differing radial distances from a first illumination zone and second illumination zone, respectively coupled to separate sources; repetitively illuminating the illumination zones of the skin with photons in a range of 1200 to 2500 nm; and detecting portions of light from the sources with the at least three detectors, the detectors positioned on a common line with the sources.
Abstract:
Apparatus for determining information associated with reflection characteristics of a surface comprising a sensor (60) configured to generate sensor output dependent on an intensity of light incident on the sensor and having a field of view directed at an external surface (57) in use; an illumination source (58) configured to emit light onto the external surface in use; an optically transparent window (61) located such as to allow light to pass from the illumination source to the external surface and to allow light to pass to the sensor from the external surface in use; a light concentrator (66) fixed to or integral with the window, the light concentrator being configured to concentrate at least some light from the illumination source onto the external surface in use such that the concentrated light may be reflected from the external surface onto the sensor via the window; and a processor (40) configured to use the sensor output to determine information associated with reflection characteristics of the external surface.
Abstract:
A laser ablation tomography system includes a specimen stage for supporting a specimen. A specimen axis is defined such that a specimen disposed generally on the axis may be imaged. A laser system is operable to produce a laser sheet in a plane intersecting the specimen axis and generally perpendicular thereto. An imaging system is operable to image the area where the laser sheet intersects the specimen axis.
Abstract:
Provided are methods and systems for concurrent imaging at multiple wavelengths. In one aspect, an imaging device includes at least one objective lens configured to receive light backscattered by an object, a plurality of pixel array photo-sensors, a plurality of bandpass filters covering respective photo-sensors, where each bandpass filter is configured to allow a different respective spectral band to pass through the filter, and a beam steering assembly in optical communication with the at least one objective lens and the photo-sensors. The beam steering assembly directs light received by at least one objective lens from the tissue of a subject to at least one pixel array photo-sensor in the plurality of pixel array photo-sensors.
Abstract:
A light radiating portion (11a, 11b, 12, 51, 52) radiates light with wavelength λ1 having predetermined absorptivity for an object (16) and light with wavelength λ2 having smaller absorptivity for the object (16) than the wavelength λ1, to a target, so as to scan in 2-dimensional directions. A light receiving portion (17) receives scattered lights reflected by the target based on light with wavelength λ1 and light with wavelength λ2. A measuring portion (18) generates information used for detection of the object (16) at the target, based on difference between the two scattered lights with wavelength λ1 and wavelength λ2 received by the light receiving portion (17). An output portion (53) outputs whether or not the object is present at the target, by 2-dimensional area information, based on scanning by the light radiating portion (11a, 11b, 12, 51, 52) and information generated by the measuring portion (18).
Abstract:
A simple and compact apparatus, and a method, for determining the characteristics of a number of fluids used in the truck and automotive industries including coolant, bio-diesel, gas-ethanol and diesel engine fluid (DEF). The apparatus includes a sample container providing optical paths of different lengths for making measurements on a sample. The dual path length design allows the apparatus to capture both NIR and UV spectral ranges. The qualitative and quantitative properties of the fluid under test are compared to test results under normal conditions or to the properties of unused fluid. Two light sources are used within a spectrometer with each source being associated with a different optical path length.
Abstract:
A radiation generation device for generating resulting electromagnetic radiation having an adjustable spectral composition includes: a multitude of radiation elements (configured to generate a radiation element specific electromagnetic radiation, respectively, upon being activated, a first radiation element of the multitude of radiation elements being activatable independently of a second radiation element of the multitude of radiation elements; a dispersive optical element; and an optical opening; the dispersive optical element being configured to deflect the radiation element specific electromagnetic radiations, in dependence on their wavelength and on a position of the radiation element generating the respective radiation element specific electromagnetic radiation, such that a particular spectral range of each of the radiation element specific electromagnetic radiations may exit through the optical opening, so that the spectral composition of the resulting electromagnetic radiation exiting through the optical opening is adjustable by selectively activating the multitude of radiation elements.
Abstract:
In one aspect, a hyperspectral image measurement device is provided to include: a main body; an illumination module disposed in the main body and including LEDs having different peak wavelengths to irradiate light to a subject; a camera disposed on the main body and receiving light reflected from the subject to acquire an image of the subject; a barrel having a contact surface contacting the subject, the contact surface located to be spaced apart from the illumination module and the camera module by a predetermined distance; and a reference cover located on the contact surface and including a standard reflection layer for reflecting light irradiated from the illumination module toward the camera module.
Abstract:
A fluorescence detection system is provided and adapted to provide a selectable excitation beam to an optical transmission path for irradiation of a device under test, including a driving module, a lighting module, a first optical module and a second optical module. The driving module includes a first shaft and a second shaft parallel thereto. The lighting module is fixed to the first shaft. The first optical module and the second optical module are fixed to the second shaft. A driving operation enables the driving module to rotate the lighting module, the first optical module and the second optical module simultaneously, determining quickly a combination of one light source, one filter and one spectroscopic module on the optical transmission path, with the combination corresponding in position to the device under test, so as to reduce the volume and cost the fluorescence detection system.
Abstract:
The invention comprises a method and apparatus for selecting optical pathways sampling a common tissue position, such as a lateral mean range in the dermis, of a person for analysis in a noninvasive analyte property determination system, comprising the steps of: probing skin with a range of illumination zone-to-detection zone distances with at least two wavelength ranges, which optionally overlap, and selecting, using a metric, illumination zone-to-detection zone distances having mean optical pathways probing the common tissue layer, such as without the mean optical pathways entering the subcutaneous fat layer of the person. Optionally, the skin tissue layers are modulated and/or treated via tissue displacement before and/or during data collection.