Abstract:
A spectrometer apparatus for determining an optical characteristic of an object or material is disclosed. A probe is positionable to be in proximity to the object or material. First and second receivers are provided on the probe. Light from one or more first receivers is coupled to one or more first optical sensors via a spectral separation implement. Light from one or more second receivers is coupled to one or more second sensors without spectral separation of the light. A light source provides light to the object or material via the probe. A processor coupled to receive one or more signals from the first and second sensors determines the optical characteristic of the object or material and determines a physical position property of the probe with respect to the object or material or a non-color optical property of the object or material. The physical position property may be a distance or angular position of the probe with respect to a surface of the object or material. The non-color optical property may be translucence, gloss, gray level and/or surface texture.
Abstract:
Spectroscopy apparatus for spectrochemical analysis of a sample having an excitation source (60) for providing spectral light (62) of the sample for analysis. The spectral light (62) is analysed via an optical system (66-66-68) that includes a polychromator (70, 74-80) and solid state multielement array detector (82). The elements (i.e. pixels) of the detector (82) are serially read by means (84) to provide light intensity measurements as a function of wavelength. A problem is that the elements (pixels) of the detector (82) continue to accumulate charge during the serial read-out. This is avoided by providing an optical shutter (72) for blocking the spectral light (62) whilst elements (pixels) of the detector (82) are being serially read. Shutter (72) has a piezoelectric actuator which is preferably a bimorph mounted as a cantilever. It is preferably located adjacent to the entrance aperture (70) of the polychromator. Bimorph structures for the actuator and drive and protective circuit arrangements are also disclosed.
Abstract:
The invention concerns a miniaturized spectrometer, especially in the form of a probe, for determination of the ingredients of a gaseous or liquid fluid with a light source (3) and a spectrometer (2), at least one measurement beam and at least one reference beam. The invention is characterized by the fact that the light of the light source (3) is optionally fanned out and bundled by means of at least one optical lens (8) to an essentially parallel beam, that at least one measurement beam is passed through a light transparent window from the probe into the fluid being investigated and through an additional light transparent window back into the probe, that at least one reference beam is guided in the probe interior, that a collecting optics (14), consisting of at least one lens, diverts the beams to the impingement point of the light guide (5) or the inlet of the spectrometer (2), and that a beam selector (7) is provided in the region of the collecting optics (14) that passes through one of the partial beams and interrupts all the others.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
The present invention relates to spectral analysis systems and methods for determining physical and chemical properties of a sample by measuring the optical characteristics of light emitted from the sample. In one embodiment, a probe head for use with a spectrometer includes a reflector for illuminating a sample volume disposed circumferentially about the light source of the probe head. In another embodiment, a probe head includes an optical blocking element for forcing the optical path between the light source and an optical pick-up optically connected to the spectrometer into the sample. The probe head also includes a reference shutter for selectively blocking light emitted from the sample from reaching the optical pick-up to facilitate calibration of the spectrometer.
Abstract:
A light analysis system is disclosed and comprises a source of substantially collimated light to be analyzed. The source comprises a sample excited by a collimated laser light source, and further comprises a holographic notch filter having the characteristic of reflecting light at the excitation wavelenghth at which the source is excited. An aberration corrected concave focusing diffraction grating receives the collimated light and focuses it at a point corresponding to its wavelength. A detector detects light at a desired wavelength focused by the diffraction grating. The holographic notch filter is positioned to filter the source of substantially collimated light to be filtered and the holographic notch filter is oriented substantially at an angle with respect to the collimated laser light source to result in a path length for the collimated laser light source which constrains a path length through the notch filter which causes the collimated laser light to be reflected by the filter away from the grating. The grating is an aberration corrected concave focusing diffraction grating. The collimated light is in the form of a bundle having a width on the order of ten millimeters.
Abstract:
There is provided a module package including a substrate, a photo sensor chip, a molded transparent layer and a glass filter. The substrate has an upper surface. The photo sensor chip is attached to the upper surface of the substrate and electrically connected to the substrate. The molded transparent layer covers the photo sensor chip and a part of the upper surface of the substrate, wherein a top surface of the molded transparent layer is formed with a receptacle opposite to the photo sensor chip. The glass filter is accommodated in the receptacle.
Abstract:
Embodiments disclosed include methods and apparatus for Fluorescent Enhanced Photothermal Infrared (FE-PTIR) spectroscopy and chemical imaging, which enables high sensitivity and high spatial resolution measurements of IR absorption with simultaneous confocal fluorescence imaging. In various embodiments, the FE-PTIR technique utilizes combined/simultaneous OPTIR and fluorescence imaging that provides significant improvements and benefits compared to previous work by simultaneous detection of both IR absorption and confocal fluorescence using the same optical detector at the same time.
Abstract:
A flow cytometry measurement system is disclosed which includes a flow chamber configured to flow particles of interest in a flow stream, one or more optical sources configured to excite the particles of interest by an excitation light activated and deactivated according to a pulse train thus causing particles of interest emitting emission light, one or more sensor packages each comprising a plurality of photodetectors configured to receive emission light from the particles of interest and, in response, provide an output voltage signal and an output current signal corresponding to photoelectron response of an incident photon on the one or more sensor packages, and a detector configured to determine successive single molecular decay of the particles of interest, generate an emission pulse associated with each incident photon on the one or more sensor packages, and count the number of emission pulses.