Abstract:
Information is encoded in an image signal by exploiting spectral differences between colors that appear the same when rendered. These spectral differences are detected using image sensing that discerns the spectral differences. Spectral difference detection methods include using sensor-synchronized spectrally-structured-light imaging, 3D sensors, imaging spectrophotometers, and higher resolution Bayer pattern capture relative to resolution of patches used to convey a spectral difference signal.
Abstract:
An imaging device includes a light splitting unit which splits first light from a subject into second light and third light, first and second imaging units, and an arithmetic unit. The first light includes the second light having infrared light and at least one of green light and blue light, and the third light having red light or the green light. The first imaging unit includes a first and a second light reception regions. The first light reception region generates at least one of the group consisting of a B signal according to the blue light and a G signal according to the green light. The second light reception region generates an IR signal according to the infrared light. The arithmetic unit generates a visible light image signal from the R signal, the G signal, and the B signal and generates an infrared light image signal from the IR signal.
Abstract:
A method and apparatus for determining a color and brightness of an LED, when the LED is biased with a current pulse. The apparatus includes a sensor having a plurality of filters and an output probe connected to the sensor, the output probe providing a color output and a brightness output in a single signal. The sensor may further include an input probe connected to the sensor providing power and a ground probe connected to the sensor providing a grounded connection to the sensor. The plurality of filters in the sensor are preferably configured in a matrix array of color receptors having different colors. The method of this invention utilizes pulsing/dynamic sampling to determine a frequency and/or a brightness of the LED output.
Abstract:
Multispectral images, including ultraviolet light and its interactions with ultraviolet light-interactive compounds, can be captured, processed, and represented to a user. Ultraviolet-light related information can be conveniently provided to a user to allow the user to have awareness of UV characteristics and the user's risk to UV exposure.
Abstract:
Ambient light sensing and proximity sensing is accomplished using pairs of stacked photodiodes. Each pair includes a shallow diode with a shallow junction depth that is more sensitive to light having a shorter wavelength and a deeper diode with a deeper junction depth more sensitive to light with longer wavelengths. Photodiodes receiving light passed through cyan, yellow, and magenta filters and light passed without a color filter are used to generate red, green, and blue information through a subtractive approach. The shallow diodes are used to generate lux values for ambient light and the deeper diodes are used for proximity sensing. One or more of the deep diodes may be used in correction to lux determinations of ambient light.
Abstract:
There is provided a photoelectric switch capable of accurately detecting even such a workpiece where a tint changes within the same workpiece, while preventing erroneous detection. The photoelectric switch includes: a light projecting unit; a light receiving unit; a coincidence degree calculating unit for comparing the acquired color information with a reference color to calculate a coincidence degree of both of the color information. When the color information is newly acquired, a detection signal generating unit compares, with a detection determination threshold, the highest coincidence degree of coincidence degrees calculated by respectively comparing the color information newly acquired, with the two or more reference colors, to perform workpiece determination.
Abstract:
A detector for determining a position of at least one object, where the detector includes: at least one optical sensor, where the optical sensor has at least one sensor region, where the optical sensor is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region by illumination light traveling from the object to the detector; at least one beam-splitting device, where the beam-splitting device is adapted to split the illumination light in at least two separate light beams, where each light beam travels on a light path to the optical sensor; at least one modulation device for modulating the illumination light, where the at least one modulation device is arranged on one of the at least two light paths; and at least one evaluation device, where the evaluation device is designed to generate at least one item of information from the at least one sensor signal.
Abstract:
A spectroscopic sensor 1 comprises an interference filter unit 20, having a cavity layer 21 and mirror layers 22, 23 opposing each other through the layer 21, for selectively transmitting therethrough light in a predetermined wavelength range according to an incident position thereof; a light-transmitting substrate 3, arranged on the layer 22 side, for transmitting therethrough light incident on the unit 20; and a light-detecting substrate 4, arranged on the layer 23 side, for detecting the light transmitted through the unit 20. The layer 21 has a filter region 24 held between the layers 22, 23; an annular surrounding region 25 surrounding the region 24 with a predetermined distance therefrom; and an annular connecting region 26 connecting an end part 24e on the substrate 4 side of the region 24 and an end part 25e on the substrate 4 side of the region 25 to each other.
Abstract:
What is disclosed is a system and method for processing image data acquired using a multi-band infrared camera system with a spectral mosaic filter arranged in a geometric pattern without having to perform a demosaicing that is typical with processing data from an array of sensors. In one embodiment, image data that has been captured using a camera system that has a spectral filter mosaic comprising a plurality of spectral filters arrayed on a grid. A material index is determined, using intensity values collected by sensor elements associated with a cell's respective spectral filters. All of the material indices collectively generate a material index image. Thereafter, material identification is performed on the material index image using, for example, pixel classification. Because the demosaicing step can be effectively avoided, image processing time is reduced. The teachings hereof find their uses in a wide array of applications including automated HOV/HOT violation detection.
Abstract:
A light sensor arrangement comprising a stack having a light sensor, an optical filter, and a mask between the light sensor and the optical filter. In particular, the light sensor comprises a light sensitive surface. The mask comprises an upper opaque base facing away from the light sensitive surface and having first apertures each confining an optical path in the mask, respectively. The mask further comprises a lower opaque base facing the light sensitive surface and having second apertures, each confining the optical path in the mask, respectively. The upper and lower base are made from metal. The optical paths are designed for allowing incident light to reach the light sensitive surface when having an angle of incidence from an allowed interval of angles determined by the size of the first and second apertures and defined with respect to an optical axis of the optical paths, respectively. A spectrometer is shown comprising at least light sensor arrangements of the aforementioned kind.