Abstract:
An embodiment of the invention provides a chip package which includes: a carrier substrate; a semiconductor substrate having an upper surface and a lower surface, disposed overlying the carrier substrate; a device region or sensing region located on the upper surface of the semiconductor substrate; a conducting pad located on the upper surface of the semiconductor substrate; a conducting layer electrically connected to the conducting pad and extending from the upper surface of the semiconductor substrate to a sidewall of the semiconductor substrate; and an insulating layer located between the conducting layer and the semiconductor substrate.
Abstract:
A mounting structure for mounting a chip type electric element on a flexible board includes: the flexible board having a first land, on which a first lead terminal of another electric element is soldered; and the chip type electric element having a long side. A whole of the long side of the chip type electric element faces a long side of the first land. A length of the long side of the first land is defined as IA, and a distance between one long side of the first land and one long side of the chip type electric element is defined as IB, the one long side of the first land facing the chip type electric element but opposite to the one long side of the chip type electric element. The length of IA is equal to or larger than the distance of IB.
Abstract:
Attachment structures for electrically coupling a microelectronic package to a microelectronic board/interposer including joint pads formed on the microelectronic board/interposer which provide a gap between respective openings in a solder resist layer of the microelectronic substrate and each of the joint pads. Such attachment structures may reduce or substantially eliminate contact between a solder interconnect and a solder resist layer of the microelectronic board/interposer, which may, in turn, reduce or substantially eliminate the potential of crack initiation and propagation at contact areas between the solder interconnect and a solder resist layer of the microelectronic board/interposer due to stresses induced by a mismatch of thermal expansion between the microelectronic package and the microelectronic board/interposer during thermal cycling. Further, the connection area between the pad and outside circuitry may be maximized, so that the impact to electrical performance due to the pad design may be minimized.
Abstract:
A method of manufacturing an electronic component, which includes arranging a plurality of first electrode pads on a first substrate, and a plurality of second electrode pads on a second substrate, so that the first and second electrode pads correspond to each other. The method further includes forming a plurality of solder bumps on the second electrode pads and putting the first substrate over the second substrate. The first and second substrates are shifted in parallel to each other, in a horizontal direction, while the solder bumps are melting, so that the solder bumps are stretched in a slant direction to cause the solder bumps to be solidified into hourglass-shapes.
Abstract:
Reliability is improved for the mechanical electrical connection formed between a grid array device, such as a pin grid array device (PGA) or a column grid array device (CGA), and a substrate such as a printed circuit board (PCB). Between adjacent PCB pads, a spacing pattern increases toward the periphery of the CGA, creating a misalignment between pads and columns. As part of the assembly method, columns align with the pads, resulting in column tilt that increases from the center to the periphery of the CGA. An advantage of this tilt is that it reduces the amount of contractions and expansions of columns during thermal cycling, thereby increasing the projected life of CGA. Another advantage of the method is that it reduces shear stress, further increasing the projected life of the CGA.
Abstract:
Provided is a semiconductor device in which misalignment between a semiconductor die and a substrate (e.g., a circuit board) can be prevented or substantially reduced when the semiconductor die is attached to the circuit board. In a non-limiting example, the semiconductor device includes: a semiconductor die comprising at least one bump; and a circuit board comprising at least one circuit pattern to which the bump is electrically connected. In a non-limiting example, the circuit board comprises: an insulation layer comprising a center region and peripheral regions around the center region; a plurality of center circuit patterns formed in the center region of the insulation layer; and a plurality of peripheral circuit patterns formed in the peripheral regions of the insulation layer. The center circuit patterns may be formed wider than the peripheral circuit patterns, formed in a zigzag pattern, and/or may be formed in a crossed shape.
Abstract:
An electronic component includes a plurality of first electrode pads arranged on a first substrate, a plurality of second electrode pads arranged at positions corresponding to the first electrode pads on a second substrate and a plurality of solder bumps which join together the first electrode pads and the second electrode pads. Here, the first substrate is located over the second substrate so that the first electrode pads and the second electrode pads are at positions which are shifted from opposite positions where the first electrode pads opposite to the second electrode pads, and at least a part of the solder bumps are solidified into hourglass-shaped.
Abstract:
An electronic carrier board for a chip to be mounted thereon is provided, which includes a body and a plurality of solder pads. The solder pads have carrying surfaces for carrying the chip thereon through conductive bumps. The carrying surfaces of at least two solder pads are oppositely inclined with respect to each other, thereby preventing the conductive bumps mounted on the carrying surfaces from displacement and thereby further preventing two adjacent conductive bumps subject to displacement from coming into short-circuit contact.
Abstract:
The present invention relates generally to permanent interconnections between electronic devices, such as integrated circuit packages, chips, wafers and printed circuit boards or substrates, or similar electronic devices. More particularly it relates to high-density electronic devices.The invention describes means and methods that can be used to counteract the undesirable effects of thermal cycling, shock and vibrations and severe environment conditions in general.For leaded devices, the leads are oriented to face the thermal center of the devices and the system they interact with.For leadless devices, the mounting elements are treated or prepared to control the migration of solder along the length of the elements, to ensure that those elements retain their desired flexibility.
Abstract:
According to one embodiment, there is provided a printed circuit board including a plurality of electrode pads provided on a component mounting face on which a semiconductor component is to be mounted, a plurality of hole terminals provided on the component mounting face so as to correspond to the electrode pads, and a plurality of wiring pattern layers connecting the plurality of electrode pads and the plurality of hole terminals corresponding to the plurality of electrode pads, the plurality of wiring pattern layers being wired across directions of elastic deformation of the component mounting face.