Abstract:
[PROBLEMS]To provide a multilayer wiring board wherein high density wiring exceeding the application limit of the conventional build up wiring boards is made possible. [MEANS FOR SOLVING PROBLEMS]A wiring board is provided with a board, which is formed by stacking along a board flat plane direction of a plurality of dielectric layers arranged along a facing direction of the both main surfaces of the board, and an inner conductor pattern arranged on the surface of the dielectric layer. The adjacent dielectric layers are formed so as to interconnect by being continuously and integrally coupled with each other through being connected at the layer edges on one of the board main planes. The connecting portions of the adjacent dielectric layers are alternately provided on one of the board main planes, and the dielectric layers are formed in a shape of one dielectric sheet that is arranged by being bent.
Abstract:
The semiconductor module includes a heat spreader, a stack of at least two semiconductors, and a termination resistor. Each of the semiconductors include circuitry. The stack of semiconductors is thermally coupled to the heat spreader. The resistor is electrically coupled to the circuitry of at least one of the semiconductors.
Abstract:
The semiconductor module includes a heat spreader and at least two semiconductors coupled thereto. Each of the semiconductors comprises a die containing integrated circuitry and electrical connectors coupled to the die. The module also includes a flexible circuit having opposing first and second sides. The first side of the flexible circuit coupled to the heat spreader, while the second side is coupled to the electrical connectors. The module also includes a termination resistor electrically coupled to the integrated circuitry of at least one of the semiconductors.
Abstract:
A multichip module comprises: a first rigid member defining one outer wall of a chamber; a second rigid member defining the opposite wall of the chamber; a sealable interface joining the first and second rigid members at their peripheries, whereby a hollow chamber is formed; a flex circuit having a plurality of integrated circuit chips disposed thereon, the flex circuit affixed to at least one of the first and second rigid members; electrical contacts at least partially extending outward through the sealable interface; and, a fluid inlet and a fluid outlet configured to permit fluid to flow through the chamber whereby heat generated by the integrated circuit chips may be removed from the module.
Abstract:
A system and method for electrically and thermally coupling adjacent IC packages to one another in a stacked configuration is provided. A flex circuit is inserted in part between ICs to be stacked and provides a connective field that provides plural contact areas that connect to respective leads of the ICs. Thus, the flex does not require discrete leads which must be individually aligned with the individual leads of the constituent ICs employed in the stack. The principle may be employed to aggregate two or more contact areas for respective connection to leads of constituent ICs but is most profitably employed with a continuous connective field that provides contact areas for many leads of the ICs.
Abstract:
Flexible circuitry is populated with integrated circuitry (ICs) disposed along one or both of its major sides. The populated flexible circuitry is disposed proximal to a rigid substrate to place the integrated circuitry on one or both sides of the substrate with one or two layers of integrated circuitry on one or both sides of the substrate. The rigid substrate exhibits adhesion features that allow more advantageous use of thermoplastic adhesives with concomitant rework advantages and while providing flexibility in meeting dimensional specifications such as those promulgated by JEDEC, for example.
Abstract:
Provided circuit modules employ flexible circuitry populated with integrated circuitry (ICs). The flex circuitry is disposed about a rigid substrate. Contacts distributed along the flexible circuitry provide connection between the module and an application environment. A strain relief portion of the flex circuitry has preferably fewer layers than the portion of the flex circuitry along which the integrated circuitry is disposed and may further may exhibit more flexibility than the portion of the flex circuit populated with integrated circuitry. The substrate form is preferably devised from thermally conductive materials.
Abstract:
The invention provides a semiconductor module comprising a heat spreader, at least two semiconductors thermally coupled to the heat spreader, and a plurality of electrically conductive leads electrically connected to the semiconductors. The leads may form part of a flexible circuit at least partially attached to the heat spreader, where at least one of the electrically conductive leads is preferably common to both of the semiconductors. The two semiconductors may be mounted or preferably directly bonded onto opposing side walls of the heat spreader. The invention also provides a method of making the abovementioned semiconductor module.
Abstract:
An electronic circuit module comprises a case, first and second substrates disposed in the case on opposite inner walls with a gap therebetween and, a flexible film having a circuit pattern thereon and attached at a part to the first substrate and attached at another part to the second substrate. A first group of electronic components including a heat-generating component are mounted on the film part attached to the first substrate. A second group of electronic components including a low-heat-resistive component are mounted on the film part attached to the second substrate. The gap between the first and second substrates is filled with a resin layer, preferably a foam resin layer, having a low heat conductivity so as to prevent a heat transfer from the heat-generating part to the low-heat-resistive part.
Abstract:
A printed circuit terminal device which includes a terminal array having very fine pitch between lead lines from a circuit portion including a flexible printed circuit board having a terminal array pattern which corresponds to the terminal array and wiring pattern and which are arranged to alternately extend from two sides of the terminal array pattern thus changing the pitch of the wiring pattern on the flexible printed circuit board to be twice that of the pitch of the wiring pattern of the terminal array. This allows a circuit to be easily and reliably coupled to the electrical terminals having very fine pitch and the formation of the wiring pattern of a coupling portion with the circuit portion can be easily performed and results in an arrangement of very small size. The flexible printed circuit board can be manufactured at low cost and the yield can be increased. Also, circuit elements such as resistors can be mounted on the wiring pattern without changing the wiring pitch.