Abstract:
The present invention is directed to an apparatus and method for connecting integrated circuits placed on opposite sides of a circuit board through utilization of conduction elements embedded in the circuit board and extending from one surface of the board to the other. Conductive traces extend along the surface of the circuit board from the conduction elements to the integrated circuits. The conductive traces may be formed from multiple conductive layers.
Abstract:
A flexible circuit includes a flexible non-conductive substrate having a first surface and a second surface. A first electrically conductive trace is provided on the first surface and a second electrically conductive trace is provided on the second surface. A passage extends through the substrate from an end of the first trace to an end of the second trace. The passage includes a beveled opening of a first size formed in the first side and axially aligned with a second beveled opening of the first size formed in the second side. The first and second openings are interconnected by an aperture axially aligned therewith and being of a second size less than the first size. An electrically conductive surface is provided on the passage for electrically interconnecting the first trace and the second trace.
Abstract:
First and second electronic parts interconnected by a nonconductive nanoporous film having first and second parallel surfaces, said film having metal-filled pores extending through the thickness of the film, such that each of said parts is contacted by the metal in at least several pores, a number of the pores being perpendicular to the surfaces of the film, and other pores being oblique to the surfaces of the film, whereby thermal dissipation is enhanced in the plane of the film.
Abstract:
The instant invention discloses a process for producing a substrate for use in printed circuit which comprises: a vessel for containing a photo-curable resin; a masking means positioned above and in close proximity to the resin surface; a planar light for irradiating through the mask a thin layer of the photo-curable resin, means for moving the thin-layered cured product in the vertical direction, means for coating additional uncured resin on the cured product and irradiating the same to form a newly formed thin-layered cured product thereon, and means for successively coating and forming additional thin-layers of cured products. The second aspect of this invention relates to a substrate for use in printed circuit boards produced by the above-mentioned process and apparatus.
Abstract:
An electronic component unit and a wire harness are provided with a bus bar plate. The bus bar plate is provided with a metallic bus bar that is built in a resin material, and including a through-hole in which a terminal of a relay mounted on a mounting surface is soldered. The through-hole is provided with a bus bar through-hole which penetrates the bus bar, and a resin material through-hole which penetrates the resin material and is formed to be larger than the bus bar through-hole to expose the surface of the bus bar. When an inner diameter of the bus bar through-hole is defined as r and an inner diameter of the resin material through-hole is defined as R, 1.5r≦R is satisfied.
Abstract:
A method of manufacturing a through-hole electrode substrate includes forming a plurality of through-holes in a substrate, forming a plurality of through-hole electrodes by filling a conductive material into the plurality of through-holes, forming a first insulation layer on one surface of the substrate, forming a plurality of first openings which expose the plurality of through-hole electrodes corresponding to each of the plurality of through-hole electrodes, on the first insulation layer and correcting a position of the plurality of first openings using the relationship between a misalignment amount of a measured distance value of an open position of a leaning through-hole among the plurality of through-holes and of a design distance value of the open position of the leaning through-hole among the plurality of through-holes with respect to a center position of the substrate.
Abstract:
A wiring board includes a substrate, a first conductor layer, a second conductor layer, and a through-via conductor. The substrate has a first surface, a second surface, and at least one through-via. The first conductor layer is formed on the first surface, and the second conductor layer is formed on the second surface. The through-via conductor is formed in the through-via for electrically connecting to the first conductor layer and the second conductor layer. The through-via has a first depressed portion exposed in the first surface, a second depressed portion exposed in the second surface, and a tunnel portion between the first depressed portion and the second depressed portion for connecting the first depressed portion and the second depressed portion. The first depressed portion and the second depressed, portion are non-coaxial.
Abstract:
A packaging substrate includes a circuit board, a number of first conductive posts, and a number of second conductive posts. The circuit board includes a first base and a first conductive pattern layer formed on a first surface of the first base. The first conductive posts extend from and are electrically connected to the first conductive pattern layer. The second conductive posts extend from and are electrically connected to the first conductive pattern layer. The height of each of the second conductive posts are larger than that of each of the first conductive posts.
Abstract:
Device, system, and method of three-dimensional printing. A device includes: a first 3D-printing head to selectively discharge conductive 3D-printing material; a second 3D-printing head to selectively discharge insulating 3D-printing material; and a processor to control operations of the first and second 3D-printing heads based on a computer-aided design (CAD) scheme describing a printed circuit board (PCB) intended for 3D-printing. A 3D-printer device utilizes 3D-printing methods, in order to 3D-print: (a) a functional multi-layer PCB; or (b) a functional stand-alone electric component; or (c) a functional PCB having an embedded or integrated electric component, both of them 3D-printed in a unified 3D-printing process.
Abstract:
An electronic device comprises a housing having an outer face and an inner face. A key is provided on the housing, which comprises a micro hole formed in the housing and a conductive material extending within the micro hole to the outer face of the housing. A sensor is coupled to the conductive material to detect whether an object is brought into contact or out of contact with the micro hole at the outer face.