Abstract:
A μLED including an epitaxial stacked layer, a first electrode and a second electrode is provided. The epitaxial stacked layer includes a first type doped semiconductor layer, a light emitting layer and a second type doped semiconductor layer. The epitaxial stacked layer has a first mesa portion and a second mesa portion to form a first type conductive region and a second type conductive region respectively. The first electrode is disposed on the first mesa portion. The second electrode is disposed on the second mesa portion. The second electrode contacts the first type doped semiconductor layer, the light emitting layer and the second type doped semiconductor layer located at the second mesa portion. Moreover, a manufacturing method of the μLED is also provided.
Abstract:
A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
Abstract:
A light emitting component includes a light emitting unit, a molding compound and a wavelength converting layer. The light emitting unit has a forward light emitting surface. The molding compound covers the light emitting unit. The wavelength converting layer is disposed above the molding compound. The wavelength converting layer has a first surface and a second surface opposite to the first surface, wherein the first surface is located between the forward light emitting surface and the second surface, and at least one of the first and second surfaces is non-planar.
Abstract:
A method for manufacturing a light-emitting diode (LED) is provided. The method includes following steps. A LED wafer including a substrate and a plurality of light-emitting units formed thereon is provided. At least a portion of the substrate is removed. The LED wafer is fixed on an extensible membrane, wherein the light-emitting unit faces the extensible membrane. The LED wafer is broken to form a plurality of LED dices separated from each other, wherein each LED dice includes at least one light-emitting unit. The extensible membrane is expanded to make a distance between any two of the LED dices become larger.
Abstract:
Provided is a light emitting diode (LED) mounted on a carrier substrate and including a semiconductor epitaxial structure and at least one electrode pad structure. The semiconductor epitaxial structure is electrically connected to the carrier substrate. The electrode pad structure includes a eutectic layer, a blocking layer and an extension layer. The eutectic layer is adapted for eutectic bonding to the carrier substrate. The blocking layer is between the eutectic layer and the semiconductor epitaxial structure. The blocking layer blocks the diffusion of the material of the eutectic layer in the eutectic bonding process. The extension layer is between the eutectic layer and the semiconductor epitaxial structure. The extension layer reduces the stress on the LED produced by thermal expansion and contraction of the substrate during the eutectic bonding process, so as to prevent the electrode pad structure from cracking, and maintain the quality of the LED.
Abstract:
A light-emitting device including a light-emitting unit, a packaging sealant, a transparent layer, and a reflective structure is provided. The light-emitting unit has at least one epitaxial layer and two electrodes correspondingly formed on the epitaxial layer. The epitaxial layer has a top surface, a bottom surface on which the two electrodes are exposed, and a side surface connecting the bottom surface and the top surface. The packaging sealant is formed on the top surface and the side surface of the epitaxial layer. The transparent layer is disposed on the packaging sealant and located above the top surface of the epitaxial layer. The reflective structure is disposed surrounding the side surface of the epitaxial layer and formed on the packaging sealant. A manufacturing method of the above light-emitting device is further provided.
Abstract:
A light emitting component includes a light emitting unit, a molding compound and a wavelength converting layer. The light emitting unit has a forward light emitting surface. The molding compound covers the light emitting unit. The wavelength converting layer is disposed above the molding compound. The wavelength converting layer has a first surface and a second surface opposite to the first surface, wherein the first surface is located between the forward light emitting surface and the second surface, and at least one of the first and second surfaces is non-planar.
Abstract:
A light emitting unit includes multiple light emitting dice, a molding compound, a substrate and a patterned metal layer. Each of the light emitting dice includes a light emitting component, a first electrode and a second electrode. The molding compound encapsulates the light emitting dice and exposes a first surface of the first electrode and a second surface of the second electrode of each of the light emitting dice. The molding compound is located between the substrate and the light emitting dice. The patterned metal layer is disposed on the first surface of the first electrode and the second surface of the second electrode of each of the light emitting dice. The light emitting dice are electrically connected to each other in a series connection, a parallel connection or a series-parallel connection by the patterned metal layer.
Abstract:
A package structure of light emitting diode includes a substrate and a light emitting diode die. The substrate has an upper surface and a lower surface opposite to each other. Two upper metal pads without mutual conduction are arranged on the upper surface. Two lower metal pads without mutual conduction are arranged on the lower surface. The light emitting diode die is disposed across the two upper metal pads. The light emitting diode die has a first electrode and a second electrode electrically connected to the two upper metal pads respectively. Wherein an orthographic projection area of one of the lower metal pads is greater than or equal to an orthographic projection area of the light emitting diode die, and the orthographic projection area of the light emitting diode die is totally located within the orthographic projection area of one of the lower metal pads.
Abstract:
A semiconductor light emitting structure includes an epitaxial structure, an N-type electrode pad, a P-type electrode pad and an insulation layer. The N-type electrode pad and the P-type electrode pad are disposed on the epitaxial structure apart, wherein the P-type electrode pad has a first upper surface. The insulation layer is disposed on the epitaxial structure and located between the N-type electrode pad and the P-type electrode pad, wherein the insulation layer has a second upper surface. The first upper surface of the P-type electrode pad and the second upper surface of the insulation layer are coplanar.