Abstract:
Methods and compositions concerning an ultraviolet light curable formulation useful for repairing composite materials including the repair of a hole in the exterior of an airplane. The formulation may contain an acrylic oligomer, an acrylic monomer, an organic peroxide, a dialkylaniline promoter, a photoinitiator. The formulation can include a filler such as carbon fabric or Kevlar fabric.
Abstract:
The present invention is a process for uniformly depositing nanomaterials having particles smaller than 1 μm (i.e., nanoparticles) onto a surface of a base material (substrate or surface). The process is used to deposit any solid (nanoparticle) of any shape such as nanofibers, nanotubes, nanoclays (e.g., platelet shaped), nano-spheres, or irregularly shaped granules. The base material upon which the nano-particles are deposited can be made of any material. The method substantially prevents the deposition on the base material of larger particles (contaminants or clusters of the nanoparticles) which are often mixed with the nanomaterials. The amount of deposition and the range of particle sizes to be deposited can also be controlled by this method. Maintaining deposition uniformity, controlling the amount of deposition, and the elimination of larger particles enhances the utility of nanomaterials, and by subsequent processing, enables the development of multifunctional composite materials (or other coated substrates) to be used in commercial applications. In the present invention nanoparticles are applied to other base materials by substantially eliminating deposition of larger clusters or aggregates of nano-sized materials or other large impurities of other materials upon or in the base materials by positioning the base material within an upper portion of a deposition chamber.
Abstract:
A method and apparatus for applying a uniform membrane coating to a substrate, such as a honeycomb structure, having a plurality of through-channels, wherein the through-channels have an average diameter of less than or equal to 3 mm. The method includes providing a liquid precursor comprising membrane-forming materials to the substrate and applying a pressure differential across the substrate. The pressure differential causes the liquid precursor to travel uniformly through the through-channels, depositing the membrane-forming materials on the walls of the through-channels and forming the membrane on the walls of the through-channels. The apparatus includes a chamber capable of holding the substrate and of maintaining a pressure differential across the plurality of through-channels.
Abstract:
Apparatus for application of primer with the aid of vacuum, includes a reservoir (26) for liquid primer, an applicator nozzle (14) having an applicator chamber (16) and a suction chamber (18), a supply system (24, 26) for supplying primer from the reservoir (28) to the applicator chamber (16), a suction system (30, 32) for withdrawing air and primer from the suction chamber (18) and a separator (34) for separating primer from the withdrawn air and recirculating the separated primer into the reservoir (28), wherein the separator (34) is a cyclone.
Abstract:
A system and method allows for processing of two groups of medical devices, both groups being alternatingly spray coated within the same enclosure. The two groups repeatedly move back and forth between a spray area and a drying area which is isolated from the spray area. One group moves into the spray area as the other group moves out and into the drying area. Thereafter, the group in the spray area moves out and into the drying area and the other group moves back into the spraying area for a second coating. The alternating process may be repeated any number of times. The spray area may be located inside a sealed spray isolator enclosure and surrounded by gas discharge nozzles.
Abstract:
A container-treatment method, of the type in which the container (12) is disposed inside a chamber (16) which defines a cavity (18) outside the container (12) and which is connected to a Vacuum pumping circuit (50), the interior of the container (12) being connected to the pumping circuit (50). The method includes a preliminary pumping step (E1) which is followed by a treatment step (E2). The preliminary step (E1) includes the following successive phases, namely: an external pumping phase (P1) which produces a drop in the pressure inside the cavity (18) only; and an internal pumping phase (P2) which produces a drop in the pressure inside the container (12) only. A machine used to implement the method is also disclosed.
Abstract:
To provide a (homogeneous) particle deposit without any impurity contamination, on which only particles with a desired size are deposited. A solution, with particles dispersed in a solvent, is jetted as a flow of fine liquid droplets from a tip part of a capillary, and the jetted fine liquid droplets are electrically charged. This flow of the droplets is introduced into a vacuum chamber through a jet nozzle, as a free jet flow. The free jet flow that travels in the vacuum chamber is introduced into an inside of a deposition chamber, inside of which is set at lower pressure, through a skimmer nozzle provided in the deposition chamber, as an ion beam. Subsequently, by an energy separation device, only particles having particular energy are selected from the electrically charged particles in the flow, and are deposited on a deposited body disposed in an inside of the deposition chamber.
Abstract:
A method of controlling the drug release rate of a drug coated endovascular stent by depositing a drug material layer on the stent and then modifying the drug material using gas cluster ion beam irradiation to create a carbon matrix with interstices containing the original drug. The rate at which the drug elutes through the interstices can be controlled by processing parameters. Multiple layers may be employed to create time varying release rates.
Abstract:
An ultraviolet (UV) cure chamber enables curing a dielectric material disposed on a substrate and in situ cleaning thereof. A tandem process chamber provides two separate and adjacent process regions defined by a body covered with a lid having windows aligned respectively above each process region. One or more UV bulbs per process region that are covered by housings coupled to the lid emit UV light directed through the windows onto substrates located within the process regions. The UV bulbs can be an array of light emitting diodes or bulbs utilizing a source such as microwave or radio frequency. The UV light can be pulsed during a cure process. Using oxygen radical/ozone generated remotely and/or in-situ accomplishes cleaning of the chamber. Use of lamp arrays, relative motion of the substrate and lamp head, and real-time modification of lamp reflector shape and/or position can enhance uniformity of substrate illumination.