Abstract:
Sterilization device, in particular for sterilization of packaging material, comprising a first chamber, a barrier element and a connection area. The first chamber is adapted to provide charge carriers for sterilization, and the connection area is connected to a third chamber so that the barrier element forms at least one part of the boundary of a volume in which a first atmosphere exists.
Abstract:
Sterilization apparatus for sterilizing packaging containers, the sterilization apparatus comprising a first carousel for supporting a plurality of sterilization devices, the sterilization devices being adapted to sterilize an interior of the packaging containers by electron beam irradiation, and a transport system for transporting the packaging containers, the transport system comprising a second carousel coaxial with the first carousel, wherein the first carousel comprises a first rotatable shaft and the second carousel comprises a separate second rotatable shaft coaxial with the first rotatable shaft.
Abstract:
Provided herein is an apparatus comprising a deposition chamber with a cathode, and a means for creating an asymmetric field about the cathode.
Abstract:
A cathode operating temperature adjusting method includes acquiring an approximate equation approximating a correlation between an emission current value in an electron beam source using a cathode and an operating temperature of the cathode at which a bias voltage becomes saturated at the emission current, measuring a current density of an electron beam from the cathode when in the state where an n-th emission current value and an n-th cathode operating temperature are set in the electron beam source, determining whether the measured current density is within a first tolerance range, changing the n-th emission current value to an (n+1)th emission current value when the measured current density is not within the first tolerance range, calculating an operating temperature of the cathode corresponding to the (n+1)th emission current value by the approximate equation, and setting the calculated operating temperature, as an (n+1)th cathode operating temperature, in the electron beam source.
Abstract:
An electron gun cathode (104) is column shaped, and emits electrons by being heated. A holder (103), which covers the bottom and sides of the electron gun cathode, has electrical conductivity and holds the electron gun cathode, and is composed of a material that does not easily react with the electron gun cathode when in a heated state, is provided. The tip of the electron gun cathode (104) protrudes from the holder (103) so as to be exposed, and electrons are emitted from the tip toward the front by applying an electric field to the tip.
Abstract:
The invention provides a charged particle beam system wherein the middle section of the focused ion beam column is biased to a high negative voltage allowing the beam to move at higher potential than the final beam energy inside that section of the column. At low kV potential, the aberrations and coulomb interactions are reduced, which results in significant improvements in spot size.
Abstract:
The invention relates to a charged particle lithography system for patterning a target. The lithography system has a beam generator for generating a plurality of charged particle beamlets, a beam stop array with a beam-blocking surface provided with an array of apertures; and a modulation device for modulating the beamlets by deflection. The modulation device has a substrate provided with a plurality of modulators arranged in arrays, each modulator being provided with electrodes extending on opposing sides of a corresponding aperture. The modulators are arranged in groups for directing a group of beamlets towards a single aperture in the beam stop array. Individual modulators within each group have an orientation such that a passing beamlet, if blocking is desired, is directed to a blocking position onto the beam stop array. Beamlet blocking positions for different beamlets are substantially homogeneously spread around the corresponding single aperture in the beam stop array.
Abstract:
[Object] In the control of electron beam focusing of a pierce-type electron gun, any influences from the space charge effect and space charge neutralizing action within the electron gun are eliminated to attain complete control of an electron beam.[Solving Means] Feedback control of the pressure within the electron gun is performed by directly measuring temperature at an internal of the pierce-type electron gun. It is desirable that locations where the direct measurement of the temperature at the internal of the electron gun is performed are an anode (39) and a flow register (43). Further, the direct measurement can be performed at any one of a ring, an aperture and an exhaust pipe provided at an outlet or an inlet of any one of a cathode chamber (31), an intermediate chamber, and a scanning chamber (33). Accordingly, all of stabilization of beam producing area (optimized design of electron gun itself), stabilization of beam transporting portion and stabilization of beam using portion have become appropriate.