Abstract:
A resonator/filter adapted for direct surface mounting to the surface of a printed circuit board. The resonator/filter comprises a block of dielectric material including at least one resonator through-hole extending therethrough and respective top, bottom and side surfaces defining respective regions of dielectric material covered with conductive material. The top block surface defines at least a first conductive region. A second conductive region on the bottom surface of the block defines an input/output contact which allows the filter to be mounted on the board with the bottom filter surface seated thereon, thus providing a direct ground contact between the board and the resonator through-hole for improved attenuation performance particularly at higher frequencies. A plurality of transmission line embodiments electrically interconnect the first and second conductive regions.
Abstract:
To provide a highly stable crystal oscillator having increased thermal efficiency. The highly stable crystal oscillator comprises; a thermostat mainframe which maintains the temperature of a crystal resonator including a resonator container for sealing a crystal piece constant, an oscillating element which constitutes an oscillation circuit together with said crystal resonator, a temperature control element which controls the temperature inside of said thermostat mainframe, and a circuit board mounted with said thermostat mainframe, said oscillating element, and said temperature control element. The construction is such that a heat generating chip resistor and a highly heat sensitive element having a higher temperature dependency, among said oscillating element and said temperature control element, are arranged on one principal plane of said circuit board, and said heat generating chip resistor, said highly heat sensitive element, and said thermostat mainframe are directly heat bonded by a thermo-conductive material.
Abstract:
An electronic part comprising: a printed circuit board including a first major surface and a second major surface; a circuit element disposed on the first major surface of the printed circuit board; a terminal electrode disposed on the second major surface of the printed circuit board and including a major surface opposed to the second major surface of the printed circuit board; a soldering-resistant film disposed on the second major surface of the printed circuit board and including a major surface opposed to the second major surface of the printed circuit board; wherein the distance between the major surface of the terminal electrode and the second major surface of the printed circuit board is substantially equal to or larger than the distance between the major surface of the soldering-resistant film in the vicinity of the terminal electrode and the second major surface of the printed circuit board.
Abstract:
An apparatus and method for manufacturing substrate elements includes providing a mother substrate, and forming a plurality of through-holes on first lines and second lines opposing each other across sections on the mother substrate. The sections define each of the substrate elements to be formed. The through-holes on the first lines are disposed alternately with respect to the through-holes on the second lines. Electrodes are also provided on the principal plane of the mother substrate and on the inner surfaces of the through-holes. Then, the mother substrate is cut along cut lines in the vertical and horizontal directions.
Abstract:
A dielectric resonator device includes a dielectric member, inner conductors provided in the dielectric member, an outer conductor formed on an outer surface of the dielectric member, signal input and output electrodes formed on the outer surface of the dielectric member opposing a mounting substrate and coupled with the inner conductors, and solder bumps formed on the outer conductor on its surface opposing the mounting substrate and on the signal input and output electrodes. By heating the dielectric resonator device opposing the mounting substrate, electrical and mechanical connections may be made therebetween through the solder bumps, while preventing the formation of solder bridges.
Abstract:
A hermetic glass module for wireless communication. In some embodiments, the module may comprise a plurality of glass layers comprising a first layer having capacitors, inductors, and resonators, a second layer comprising capacitors, inductors, diplexers, and waveguides, a third layer comprising microchips, and capacitors, and a fourth layer comprising a glass cover layer, and antennas disposed within the glass cover layer. The plurality of glass layers may each be separated by a substrate of a plurality of substrates and are connected by a redistribution layer (RDL) of a plurality of RDLs.
Abstract:
The disclosure relates to the technical field of quartz crystal oscillators, in particular to a direct temperature measurement oven controlled crystal oscillator. The direct temperature measurement oven controlled crystal oscillator according to the present disclosure does not require additional components for measuring the temperature of the wafer inside the crystal oscillator. Instead, the temperature measurement device is disposed on the surface of the wafer to directly measure the temperature of the wafer itself, In order to achieve the exact temperature of the wafer itself. The oven controlled crystal oscillator according to the present disclosure has a simple in structure and is easy to be manufactured. The temperature of the wafer itself is directly measured to make temperature measurement more accurate.
Abstract:
An electronic device includes a first board, a second board, and support pillars. The support pillars hold the first board and the second board mutually separated. The first board has a first surface on which an electronic component is mounted. The first board has a second surface that includes depressed portions into which the support pillars extending from the second board are inserted.
Abstract:
An electronic component-containing module includes a board, electronic components, and a sealing resin and includes a space provided between the board and at least one of the electronic components. The dryness factor of the sealing resin is about 60% or more where, after the electronic component-containing module is moisturized, the electronic component-containing module is heated to the re-melting temperature of a brazing filler metal.
Abstract:
A method of manufacturing an electric wiring layer including an electric wiring includes obtaining a pressed powder molded layer by pressurizing a powder including a metal particle with an insulating layer, the metal particle being constituted by a metal particle having conductivity and a surface insulating layer which is located on a surface of the metal particle and which mainly contains a glass material; and irradiating the pressed powder molded layer with energy rays and forming the electric wiring in an irradiation region.