Abstract:
A circuit assembly generally includes a circuit board and at least one electrical pathway configured to couple a thermoelectric module to the circuit board. The circuit board and the at least one electrical pathway form part of the thermoelectric module when the thermoelectric module is coupled to the circuit board via the at least one electrical pathway. The thermoelectric module, including the portion of the circuit board forming part of the thermoelectric module, defines a footprint that is smaller than a footprint of the circuit board. As such, the circuit board is capable of supporting electrical components on the circuit board in a position outside the footprint defined by the thermoelectric module.
Abstract:
Provided is a method for protecting a thermal sensitive component mounted on a board during a thermal process. The method includes: providing the board, providing a protection apparatus which is removable and made of a thermoelectric material to protect the thermal sensitive component during the thermal process, wherein the protection apparatus cools the thermal sensitive component during the thermal process in response to applying a voltage to the protection apparatus. Further provided is the protection apparatus for the thermal sensitive component mounted on the board during the thermal process.
Abstract:
A circuit board includes a board having a hole formed therein, and an imager that is bonded to a first region including at least a portion of the hole in a front surface of the board.
Abstract:
An article of manufacture, comprising: an LED or other light source in thermal communication with a thermoelectric module; and a feedback circuit that directs current generated by the thermoelectric module to at least one device. This invention improves on prior art by recycling heat produced by the LED or other light source into electricity produced via the thermoelectric module to be used by the light source, a cooling device, battery charger for battery backup system, control or monitoring system, etc.
Abstract:
In order to provide a highly reliable thermoelectric device, in a thermoelectric device, a plurality of heat-radiating-side electrodes, arranged in accordance with positions where respective thermoelectric elements are to be arranged, are arrayed in an array fashion on a planer surface of a heat-radiating-side board. Heat-radiating-side end surfaces of the plurality of p-type thermoelectric elements and n-type thermoelectric elements and the heat-radiating-side electrodes are joined together by solders. Heat-absorbing-side electrodes are brought into sliding contact with heat-absorbing-side end surfaces of these thermoelectric elements.
Abstract:
A flexible interconnect structure allows for rapid dissipation of heat generated from an electrical device that includes light-emitting elements, such as light-emitting diodes (“LEDs”) and/or laser diodes. The flexible interconnect structure comprises: (1) at least one flexible dielectric film on which circuit traces and, optionally, electrical circuit components are formed and at least a portion of which is removed through its thickness; and (2) at least a heat sink attached to one surface of the flexible dielectric film opposite to the surface on which circuit traces are formed. The flexible interconnect structure can include a plurality of such flexible dielectric films, each supporting circuit traces and/or circuit components, and each being attached to another by an electrically insulating layer. Electrical devices or light sources having complex shapes are formed from such flexible interconnect structures and light-emitting elements attached to the heat sinks so to be in thermal contact therewith.
Abstract:
A flexible hybrid electronic system and method includes a first structure and a second structure. The first structure includes a first flexible substrate, a first electronic component secured to the first flexible substrate, and a first flexible conductive trace formed in part from conductive gel. The second structure includes a second flexible substrate, a second electronic component secured to the second flexible substrate, and a second flexible conductive trace formed in part from conductive gel. The first structure is bonded to the second structure at an interconnect region, the first conductive trace is electrically coupled to the second conductive trace within the interconnect region, and the first electronic component is operatively coupled to the second electronic component.
Abstract:
Provided is a heater assembly for aerosol generating devices, the heater assembly including a thermally conductive element that has a cylindrical shape and includes an accommodation space for accommodating a cigarette, a flexible heater that surrounds at least a portion of an outer surface of the thermally conductive element, and an adhesion member that surrounds the flexible heater such that the flexible heater closely adheres to the thermally conductive element.
Abstract:
A system receives event information associated with an event that corresponds to a temperature of a memory sub-system including memory devices encased in respective packages. The system determines whether the event information associated with the event satisfies a threshold condition. Responsive to determining that the event information associated with the event satisfies the threshold condition, the system causes a thermoelectric component (TEC) that is coupled to an external surface of each of the respective packages of the memory devices of the memory sub-system to transfer thermal energy between the TEC and the memory devices via thermal conduction.
Abstract:
An optical transceiver module temperature control device includes a processor, a printed circuit board assembly, an optical transceiver module and a temperature adjustment element. The processor is configured to measure an ambient temperature. The printed circuit board assembly includes a first side and a second side. The first side is opposite to the second side. The optical transceiver module is disposed on the first side of the printed circuit board assembly. The temperature adjustment element is coupled to the processor and disposed on the second side of the printed circuit board assembly. The processor is configured to generate a temperature adjustment signal according to the ambient temperature and an operating temperature range. The temperature adjustment element is configured to perform heat exchange with the printed circuit board assembly according to the temperature adjustment signal to adjust a temperature of the optical transceiver module into the operating temperature range.