Abstract:
In one embodiment, a cleaning member has an annular part and an opening positioned radially inside the annular part, and can be moved up and down between a first position and a second position relative to a cleaning nozzle. For cleaning of the back surface of the wafer, the cleaning member is placed at its first position that allows a cleaning liquid to reach the back surface of the substrate through the opening of the cleaning member. For cleaning of the cup structure, the cleaning member placed at its second position higher than the first position is being rotated, and a cleaning liquid discharged from the cleaning nozzle collides with an annular part of the cleaning member and is guided to the inner surface of a cup structure.
Abstract:
A method of forming a coating film over a substrate is provided. The method includes spinning the substrate. The method further includes providing a central coating liquid spray over a central portion of the substrate. The method also includes providing first coating liquid sprays over the substrate. The first coating liquid sprays surround the central coating liquid spray and are spaced apart from the central coating liquid spray by a same first distance.
Abstract:
The present disclosure provides methods, device, and system for wafer processing. The wafer processing apparatus uses lid dispenser to disperse at least one reagent to the surface of the wafer. Further, the wafer is positioned on top of a rotatable vacuum chuck configured to spread at least one reagent over the surface of the wafer via a centrifugal force or surface tension, thereby permitting the at least one reagent to react with an additional reagent. Further, when dispensing the at least one reagent, a separation gap between the lid dispenser and the wafer is at a predetermined distance, for example, from 50 μm to 2 mm.
Abstract:
A substrate liquid processing apparatus is provided, in which a processing solution and an atmosphere can be separated from each other within a collection cup. The substrate liquid processing apparatus includes: a substrate rotation unit; a processing solution supply unit; a collection cup configured to collect the processing solutions; liquid collection regions formed at the collection cup; a liquid drain opening formed at a bottom portion of the collection cup; an exhaust opening formed above the liquid drain opening; a fixed cover configured to cover an upper portion of the exhaust opening with a space therebetween; an elevating cup provided above the fixed cover and configured to guide the processing solutions into the liquid collection regions; and a cup elevating unit configured to move up and down the elevating cup depending on the kinds of the processing solutions.
Abstract:
The present invention is a method of treating a substrate using a block copolymer containing a first polymer and a second polymer, the method including: a block copolymer coating step of applying the block copolymer onto a substrate or a base film applied on the substrate; and a polymer separation step of phase-separating the block copolymer into the first polymer and the second polymer by thermally treating the block copolymer on the substrate in a non-oxidizing gas atmosphere.
Abstract:
A spin treatment apparatus according to an embodiment performs a treatment while rotating a substrate and includes: at least three clamp pins configured to contact an outer peripheral surface of the substrate and clamp the substrate; rotatable pin rotators provided for the respective clamp pins and each configured to retain the corresponding clamp pin at a position offset from a rotation axis of the pin rotator parallel with a rotation axis of the substrate; magnet gears provided for the respective pin rotators around outer peripheral surfaces thereof and each having a magnetic-pole part formed spirally about the rotation axis of the pin rotator; rotation magnets provided for the respective magnet gears and positioned to attract and be attracted by the magnetic-pole part of the corresponding magnet gear; and a movement mechanism configured to move the rotation magnets along the rotation axes of the pin rotators.
Abstract:
A spin chuck according to the present invention is provided and is configured to eliminate the wrap of chemical over the wafer edge. The dual speed wafer spin chuck apparatus acts to prevent liquids from affecting the backside of a wafer during processing. An outer ring is placed around the wafer with a narrow gap between the two such that drops of liquid on the surface of the wafer will touch the outer ring as they move to the outermost edge of the wafer. By spinning this outer ring at high speed, centrifugal force causes these drops to be pulled off of the wafer and flung radially outward, thus preventing the liquid from affecting the backside of the wafer,
Abstract:
According to one embodiment, a film forming system includes: a stage including a placement surface on which an object to be coated is placed; a rotating mechanism rotating the stage in a rotational direction along the placement surface; an application nozzle discharging a material onto the object placed on the stage for application; a moving mechanism relatively moving the stage and the application nozzle along the placement surface in a cross direction crossing the rotational direction; a controller performing a control to rotate the stage on which the object is placed through the rotating mechanism while relatively moving the stage and application nozzle along the placement surface in the cross direction through the moving mechanism and applying the material to the object on the stage through the application nozzle; and a cleaning apparatus cleaning the application nozzle.
Abstract:
A spin coating apparatus that supplies a coating liquid to a substrate and rotating the substrate to form a coating film, has a holding part that holds the substrate mounted thereon in a horizontal position; a rotationally driving source that rotationally drives the holding part about a rotational axis parallel with the vertical direction, thereby rotating the substrate; and a coating liquid supplying part that supplies the coating liquid to the substrate held by the holding part.
Abstract:
An apparatus for coating a stent comprises a coating solution reservoir, a stent support for carrying a stent adjacent the reservoir, transducers for generating waves through the coating solution, and a controller that controls timing at which the transducers are powered in order to eject a droplet of the coating solution.