Abstract:
A substrate processing apparatus includes a chamber including a processing room for processing of a substrate using an introduced gas and an exhaust room for exhausting the gas in the processing room, a shield member provided near a side wall of the chamber to separate the processing room and the exhaust room and including a hole allowing the processing room and the exhaust room to communicate with each other, the shield member being driven in a vertical direction, and a hollow relay member connected to a pipe connected to an instrument outside the chamber and configured to be driven in a horizontal direction. When the shield member reaches an upper position, the relay member is driven inwardly of the chamber to be connected to the shield member at its inward end to allow the processing room and the pipe to communicate with each other through the hole.
Abstract:
An ionization gauge to measure pressure, while controlling the location of deposits resulting from sputtering when operating at high pressure, includes at least one electron source that emits electrons, and an anode that defines an ionization volume. The ionization gauge also includes a collector electrode that collects ions formed by collisions between the electrons and gas molecules and atoms in the ionization volume, to provide a gas pressure output. The electron source can be positioned at an end of the ionization volume, such that the exposure of the electron source to atom flux sputtered off the collector electrode and envelope surface is minimized. Alternatively, the ionization gauge can include a first shade outside of the ionization volume, the first shade being located between the electron source and the collector electrode, and, optionally, a second shade between the envelope and the electron source, such that atoms sputtered off the envelope are inhibited from depositing on the electron source.
Abstract:
Aspects of the present disclosure include a computer-implemented method for identifying an operating temperature of an integrated circuit (IC), the method including using a computing device for: applying a test voltage to a test circuit embedded within the IC, the test circuit including a phase shift memory (PSM) element therein, wherein the PSM element crystallizes at a crystallization temperature from an amorphous phase having a first electrical resistance into a crystalline phase having a second electrical resistance, the second electrical resistance being less than the first electrical resistance; and identifying the IC as having operated above the crystallization temperature in response to a resistance of the test circuit at the test voltage being outside of the target operating range.
Abstract:
In a method for determining at least one physical parameter, a sensor unit which is activated by at least one periodic excitation (1.4) is provided, wherein the sensor unit has at least one detection region in which changes of the parameter in the surroundings of the sensor unit lead to output signal (1.7) from the sensor unit. The sensor unit is wired such that if there are no changes of the parameter in the detection region the output signal (1.7) is a zero signal or virtually a zero signal at the output of the sensor unit, whereas if there are changes of the parameter in the detection region the output signal (1.7) is a signal that is not zero and has a specific amplitude and phase. In a closed control loop, the non-zero signal in the receive path is adjusted to zero using a control signal to achieve an adjusted state even in the presence of changes of the parameter in the detection region. The control signal is evaluated in order to determine the physical parameter. The output signal (1.7) from the sensor unit is reduced substantially to the fundamental wave of the excitation (1.4) and the output signal (1.7) is controlled to zero in the entire phase space by means of at least one pulse width modulation. A temperature-stable, fully digital measuring system is provided as a result of the fact that the at least one pulse width modulation itself generates a correction signal with a variable pulse width and possibly a variable phase which is then added to the output signal (1.7) from the sensor unit and the output signal is thereby controlled to zero in the entire phase space, wherein the pulse width of the correction signal and/or the phase of the correction signal is/are determined by the deviations of the output signal (1.7) from zero.
Abstract:
A Long Lifetime Cold Cathode Ionization Vacuum Gauge Design with an extended anode electrode having an axially directed tip, a cathode electrode, and a baffle structure. The axially directed tip of the anode electrode can have a rounded exterior with a diameter at least 10% greater than the diameter of the anode electrode.
Abstract:
A charged particle beam instrument is offered which can easily perform an in situ observation in a gaseous atmosphere. The charged particle beam instrument (100) is used to perform an observation of a specimen (S) placed in a gaseous atmosphere and has a specimen chamber (2), a gas supply portion (6) for supplying a gas into the specimen chamber (2), a venting portion (7) for venting the specimen chamber (2), a gaseous environment adjuster (4), and a gas controller (812) for controlling the gaseous environment adjuster (4). This adjuster (4) has a gas inflow rate adjusting valve (40) for adjusting the flow rate of the gas supplied into the specimen chamber (2) and a first vacuum gauge (CG1) for measuring the pressure of the gas supplied into the specimen chamber (2). The gas controller (812) sets a target value of pressure for the gas supplied into the specimen chamber (2) based on a predetermined relational expression indicating a relationship between the reading of the first vacuum gauge (CG1) and the pressure inside the specimen chamber (2) and on a corrective coefficient for correcting the reading of the first vacuum gauge (CG1) according to the species of the gas supplied into the specimen chamber (2) and controls the gas inflow rate adjusting valve (40) such that the reading of the first vacuum gauge (CG1) reaches the target value of pressure.
Abstract:
An ionization gauge that measures pressure has an electron source that emits electrons, and an anode that defines an ionization space. The gauge also includes a collector electrode to collect ions formed by an impact between the electrons and a gas and to measure pressure based on the collected ions. The electron source is dynamically varied in emission current between a plurality of emission levels dependent on pressure and a second parameter other than pressure. The ionization gauge may also vary various operating parameters of the gauge components according to parameters stored in a non-volatile memory and selected by a user.
Abstract:
An ionization gauge that eliminates a hot cathode or filament, but maintains a level of precision of gas density measurements approaching that of a hot cathode ionization gauge. The ionization gauge includes a collector electrode disposed in an ionization volume, an electron source without a heated cathode, and an electrostatic shutter that regulates the flow of electrons between the electron source and the ionization volume. The electrostatic shutter controls the flow of electrons based on feedback from an anode defining the ionization volume. The electron source can be a Penning or glow discharge ionization gauge.
Abstract:
A gas analyzer using a quadrupole mass spectrometric method etc. is provided with an ionizer 211 to ionize a sample gas, a first ion detector 212 and a second ion detector 213 each configured to detect a respective ion from ionizer 211, and each being disposed a respective distance from the ionizer 211 on an opposite side of the ionizer 211, the respective distances being different from each other, a filter 214 interposed between the ionizer 211 and the first ion detector 212 to selectively allow ions from the ionizer 211 to pass therethrough, and an arithmetic device 3 to correct a partial pressure PP1 of a specific component obtained from the first ion detector 212 and selected by the filter 214 by using a first total pressure TP1 of the sample gas obtained from the first ion detector 212 and a second total pressure TP2 of the sample gas obtained from the second ion detector 213.