Abstract:
An integrated device for detection of the UV-index is provided with: a photodetector, which generates a detection quantity as a function of a detected UV radiation; and a processing stage, which is coupled to the photodetector and supplies at output a detected value of the UV-index, on the basis of the detection quantity. The processing stage processes the detection quantity on the basis of an adjustment factor, to supply at output the detected value of the UV-index and is further provided with an adjustment stage, coupled to the processing stage for adjusting the value of the adjustment factor.
Abstract:
An apparatus and methods for retrofitting known solar simulator systems to allow the exit beam to be changed in size and location without changing the other fundamental functions of the main optical elements. The solar simulator system is provided with means for de-magnifying the exit beam to provide higher power densities at the illumination plane. By adding or replacing one final optical element, the system user can change the location of the illumination plane and the size of the illumination area. This change in size can increase or decrease the power density of the exit beam.
Abstract:
The light measurement apparatus according to the present invention includes: an integrating sphere; a reference calibration light source body holding unit that is arranged on the integrating sphere and to which a reference calibration light source body is attached; a test light source body holding unit that is arranged on the integrating sphere and to which a test light source body to be measured is attached; a light detection unit that is arranged on the integrating sphere and detects light from the reference calibration light source body and the test light source body; and a control unit that controls lighting of the reference calibration light source body and the test light source body, the light measurement apparatus being configured so that only either one of the reference calibration light source body and the test light source body is able to selectively emit light in the integrating sphere.
Abstract:
An optical sensor includes a case and an integrated light projector entirely within the case including a light emitter, a light projecting lens, and a light projecting lens holder configured to hold the light projecting lens. A light receiver of the optical sensor is configured to receive reflected light of light projected from the light projector, and a light receiver lens is configured to form an image of the reflected light on the light receiver. The light projector, the light receiver, and the light receiver lens are each independently and directly fixed to the case.
Abstract:
There are provided a drift calculation device capable of accurately calculating a drift by using a buffer of smaller capacity, and a light detection device provided with the same. Every time measurement intensity is input according to a predetermined cycle, data in a plurality of sum buffers 321 to 324 are updated based on at least one of the measurement intensity and the measurement time at that time. The sum buffers 321 to 324 are assigned respectively to a plurality of sum functions forming a coefficient included in a calculation formula for calculating a drift by using the least squares method. A drift is calculated by substituting the updated data in the plurality of sum buffers 321 to 324 in the calculation formula. Since it is not necessary to store all the measurement intensity input at the predetermined cycle, a drift is accurately calculated by a buffer of smaller capacity.
Abstract:
An optical system comprising a light source comprising a plurality of light emitting elements (LEEs) is presented. The light source is mounted on the same substrate or chip board so that the LEEs are in thermal contact with each other such as to enable thermic conduction and heat transfer between the LEEs. The system is switchable between light source modes in which different light emitting elements or a different number of light emitting elements is switched in an on mode and in a down mode respectively. In all light source modes, one or more light emitting elements, such as those with longer expected lifetime, remain in the on mode, while one or more light emitting elements, such as those with shorter expected lifetime, may be switched in the down mode.
Abstract:
Provided is a multi-wave band light sensor combined with a function of infrared ray (IR) sensing including a substrate, an IR sensing structure, a dielectric layer, and a multi-wave band light sensing structure. The substrate includes a first region and a second region. The IR sensing structure is in the substrate for sensing IR. The dielectric layer is on the IR sensing structure. The multi-wave band light sensing structure includes a first wave band light sensor, a second wave band light sensor, and a third wave band light sensor. The second wave band light sensor and the first wave band light sensor are overlapped and disposed on the IR sensing structure on the first region of the substrate from the bottom up. The third wave band light sensor is in the dielectric layer of the second region.
Abstract:
An integrated illumination reference source for generating an illumination reference signal may include an optical element having a first outer surface and a second outer surface, such that the first and the second outer surface are substantially opposing. The optical element receives an incident optical signal at the first outer surface and projects the incident optical signal from the second outer surface onto a surface. A reflective device that is located on a region of the second outer surface is offset from an optical axis of the optical element. The reflective device includes a reflective surface that reflects a portion of the incident optical signal from the second outer surface back through the first outer surface, whereby the reflective surface of the reflective device is encapsulated between the first outer surface and the second outer surface of the optical element.
Abstract:
A calibration system and method for calibrating a detector are disclosed. In one example, the calibration system comprises a plurality of radiation sources configured to emit electromagnetic radiation, a positioning mechanism disposed opposite the plurality of radiation sources, having a single degree of freedom with respect to the plurality of radiation sources, and an optical element coupled to the positioning mechanism, and configured to rotate to a plurality of calibration positions, the optical element in each of the plurality of calibration positions being configured to receive the electromagnetic radiation from a corresponding radiation source and to reflect the electromagnetic radiation to the detector.
Abstract:
A validatable method for determining a photochemically effective dose for inactivating pathogens in a fluid sample is described herein. In particular, the instant invention covers methods for determining a photochemically effective dose sufficient to inactivate pathogens in a biological sample while leaving biologically active substances of interest unaffected. A batch irradiation reactor effective for inactivating pathogens in biological samples is also described.