Abstract:
A charged particle beam apparatus is provided with a controller configured to control other components and perform operations including: an irradiating operation to irradiate a first position of a sample with a charged particle beam while gradually changing a scan range of the charged particle beam to move from a first position; a first image acquiring operation to acquire an image of each portion where the charged particle beam moves; an indicator forming operation to form an indicator at a second position by the charged particle beam when the scan range of the charged particle beam reaches the second position; a second image acquiring operation to acquire an image of the second position in a state where the indicator is formed; and an adjusting operation to adjust relative position between the stage and the scan range of the charged particle beam.
Abstract:
The present invention aims at providing a pattern dimension measuring device that realizes the measurement of a dimension of a pattern difficult to set up a measurement box, or between patterns away from each other with high precision. In order to achieve the above object, a pattern dimension measuring device is proposed which moves a field of view with reference to a first pattern formed on the specimen on the basis of predetermined first distance information, acquires a first image, executes template matching with the use of the first image and a matching template, and calculates a distance between a second pattern included in the first image and the first pattern on the basis of second distance information obtained by the template matching, and the first distance information.
Abstract:
In general, in one aspect, the disclosure features a method and system for imaging of samples, for example, imaging samples with charged particles.
Abstract:
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system (“laser”). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.
Abstract:
A charged particle beam apparatus includes: a charged particle beam column; a detector configured to detect secondary charged particles; an image processor; a display device; a needle arranged in an irradiation area of charged particle beam; a needle actuator; a user interface; and a controller configured to control the needle actuator to actuate the needle in accordance with a target position that is set by the user interface. The controller controls the needle actuator to move the needle to track a change of the target position that is set by the user interface.
Abstract:
An electro-optical inspection apparatus is provided that is capable of preventing adhesion of dust or particles to the sample surface as much as possible. A stage (100) on which a sample (200) is placed is disposed inside a vacuum chamber (112) that can be evacuated to vacuum, and a dust collecting electrode (122) is disposed to surround a periphery of the sample (200). The dust collecting electrode (122) is applied with a voltage having the same polarity as a voltage applied to the sample (200) and an absolute value that is the same or larger than an absolute value of the voltage. Thus, because dust or particles such as particles adhere to the dust collecting electrode (122), adhesion of the dust or particles to the sample surface can be reduced. Instead of using the dust collecting electrode, it is possible to form a recess on a wall of the vacuum chamber containing the stage, or to dispose on the wall a metal plate having a mesh structure to which a predetermined voltage is applied. In addition, adhesion of dust or particles can be further reduced by disposing a gap control plate (124) having a through hole (124a) at the center above the sample (200) and the dust collecting electrode (122).
Abstract:
An imaging region of a high-magnification reference image capable of being acquired in a low-magnification field without moving a stage from a position at which a defective region has been imaged at a low magnification is searched for and if the search is successful, an image of the imaging region itself is acquired and the high-magnification reference image is acquired. If the search is unsuccessful, the imaging scheme is switched to that in which the high-magnification reference image is acquired from a chip adjacent to the defective region.
Abstract:
A method and apparatus is provided for preparing samples for observation in a charged particle beam system in a manner that reduces or prevents artifacts. Material is deposited onto the sample using charged particle beam deposition just before or during the final milling, which results in an artifact-free surface. Embodiments are useful for preparing cross sections for SEM observation of samples having layers of materials of different hardnesses. Embodiments are useful for preparation of thin TEM samples.
Abstract:
The present invention is provided to enable a detailed inspection of a specimen and preventing a distortion of an observation image even when a specimen containing an insulating material is partially charged. For a scanning ion microscope utilizing a gas field ionization ion source, a thin film is disposed between an ion optical system and a specimen, and an ion beam is applied to and transmitted through this thin film in order to focus a neutralized beam on the specimen. Furthermore, an electrode for regulating secondary electrons discharged from this thin film is provided in order to eliminate mixing of noises into an observation image.
Abstract:
An image acquisition method and system for use in transmission electron microscopy and capable of providing information about a wide range of frequency range. The method is initiated with setting at least one of the spherical aberration coefficient and chromatic aberration coefficient of the imaging system of the microscope to suppress attenuation of a contrast transfer function due to an envelope function. Then, an image is obtained by the imaging system placed in defocus conditions.