Abstract:
The present invention relates to a printed circuit board including: a substrate; a circuit pattern formed on a surface of the substrate; a dummy pattern formed on the surface of the substrate, where the circuit pattern is not formed, to be spaced apart from the circuit pattern by a predetermined interval; and a plurality of heat radiating vias formed along an outer edge of the substrate to electrically connect the dummy patterns through the substrate, and it is possible to suppress generation of electromagnetic waves or shield the electromagnetic waves and improve heat radiating characteristics at the same time.
Abstract:
The present invention provides a structure of a printed circuit board and a manufacturing method thereof. The method includes: (a) forming a circuit pattern on an insulating layer in which a seed layer is formed; (b) embedding the circuit pattern into the insulating layer by a press method; and (c) removing the seed layer. According to the present invention, a fine pattern may be formed without occurring alignment problem by forming a circuit pattern directly on an insulating layer and reliability of the formed fine pattern may be increased by performing a process of embedding protruded circuits into the insulating layer. In addition, possibility of inferior circuit occurring due to ion migration between adjacent circuits may be reduced by performing over-etching a circuit layer to be lower than a surface of the insulating layer during the etching process of removing a seed layer.
Abstract:
A circuit board includes a foil circuit provided on a synthetic resin plate formed by injection molding, made of a copper foil, and having a pattern different for the circuit board. Anchor pins projecting upward are provided on the resin plate and passed through pinholes made in the foil circuit. The foil circuit is positioned and secured to the resin plate. In a required portion of the resin plate, a terminal insertion hole is provided, and a receiving terminal is secured to the required portion of the terminal insertion hole and connected to the foil circuit.
Abstract:
A printed circuit board having a micro strip line, a printed circuit board having a strip line and a method of manufacturing thereof are disclosed. The printed circuit board having a micro strip line in accordance with an embodiment of the present invention includes a first insulation layer, a signal line buried in one surface of the first insulation layer, a plurality of conductors penetrating through the first insulation layer and being disposed on both sides of the signal line in parallel with the signal line, and a ground layer formed to be electrically connected to the conductor on the other surface of the first insulation layer.
Abstract:
A circuit substrate fabricating process includes a base layer, a patterned conductive layer, a dielectric layer, an outer pad and a conductive block. The patterned conductive layer is disposed on the base layer and has an inner pad. The dielectric layer is disposed on the base layer and covers the patterned conductive layer. The outer pad is disposed on the dielectric layer. The conductive layer is passed through the dielectric layer and connected between the outer pad and the inner pad, wherein the outer pad and the conductive block are formed as an integrative unit, and an outer diameter of the outer pad is substantially equal to an outer diameter of the conductive block. In addition, a fabricating process for the circuit substrate is also provided.
Abstract:
A wiring board includes: an uppermost wiring layer formed on a prescribed number of underlying wiring layers, a portion of the uppermost wiring layer being exposed and used as a pad for connection with a component to be mounted; and an insulation resin layer covering the uppermost wiring layer, wherein the thickness of the portion of the uppermost wiring layer is larger than that of other portions thereof.
Abstract:
A printed circuit board having an insulating layer; circuit patterns formed on both surfaces of the insulating layer in order to be embedded in the insulating layer; and a bump formed to pass through the insulating layer in order to electrically connect the circuit patterns formed on both surfaces of the insulating layer.
Abstract:
Disclosed is a printed circuit board having a plating pattern buried in a via and a method of manufacturing the same. The method of manufacturing the printed circuit board includes forming a negative pattern for forming a plating pattern, thus remarkably reducing the generation of plating thickness deviation in a plating process for forming a circuit pattern, and the printed circuit board has improved electrical signal transmission properties.
Abstract:
A layer or layers for use in package substrates and die spacers are described. The layer or layers include a plurality of ceramic wells lying within a plane and separated by metallic vias. Recesses within the ceramic wells are occupied by a dielectric filler material.
Abstract:
A semiconductor device includes a substrate, a first recessed conductive layer embedded and recessed into a first surface of the substrate, and a first raised conductive layer disposed above the first surface. A first vertical offset exists between an upper surface of the first recessed conductive layer and an upper surface of the first raised conductive layer. The device includes a second recessed conductive layer embedded and recessed into a second surface of the substrate. The second surface of the substrate is opposite the first surface. The device includes a second raised conductive layer disposed beneath the second surface and an interconnect structure disposed on the first recessed and raised conductive layers and the second recessed and raised conductive layers. A second vertical offset exists between a lower surface of the second recessed conductive layer and a lower surface of the second recessed conductive layer.