Abstract:
A light emitting diode including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, and a Bragg reflector structure. The emitting layer is configured to emit a light beam and is located between the first-type semiconductor layer and the second-type semiconductor layer. The light beam has a peak wavelength in a light emitting wavelength range. The first-type semiconductor layer, the emitting layer, and the second-type semiconductor layer are located on a same side of the Bragg reflector structure. A reflectance of the Bragg reflector structure is greater than or equal to 95% in a reflective wavelength range at least covering 0.8X nm to 1.8X nm, and X is the peak wavelength of the light emitting wavelength range.
Abstract:
A light emitting diode (LED) having distributed Bragg reflector (DBR) and a manufacturing method thereof are provided. The distributed Bragg reflector is used as a reflective element for reflecting the light generated by the light emitting layer to an ideal direction of light output. The distributed Bragg reflector has a plurality of through holes, such that the metal layer and the transparent conductive layer disposed on two sides of the distributed Bragg reflector may contact each other to conduct the current. Due to the distribution properties of the through holes, the current may be more uniformly diffused, and the light may be more uniformly emitted from the light emitting layer.
Abstract:
A light-emitting diode package structure includes a package carrier, a light guiding component and a light emitting unit. The light guiding component is disposed on the package carrier. The light emitting unit is disposed on an upper surface of light guiding component relatively distant from the package carrier. A horizontal projection area of the light guiding component is greater than that of the light emitting unit. The light emitting unit is adapted to emit a light beam, and a portion of the light beam enters the light guiding component and emits from the upper surface of the light guiding component. An included angle existing between the light beam and a normal direction of the upper surface ranges from 0 degree to 75 degrees.
Abstract:
A light emitting element structure includes a light emitting unit configured to emit light; a package unit configured to cover the light emitting unit; a transparent light guide structure arranged on the package unit; and a first periodic sub-wavelength microstructure formed on the transparent light guide structure, wherein a plurality of holes of the first periodic sub-wavelength microstructure form a periodic pattern, and a distance between two adjacent holes of the first periodic sub-wavelength microstructure is smaller than λ/n, λ is a peak wavelength of light passing through the package unit from the light emitting unit, and n is a refractive index of the first periodic sub-wavelength microstructure.
Abstract:
The present invention relates to a light emitting diode (LED) and a flip-chip packaged LED device. The present invention provides an LED device. The LED device is flipped on and connected electrically with a packaging substrate and thus forming the flip-chip packaged LED device. The LED device mainly has an Ohmic-contact layer and a planarized buffer layer between a second-type doping layer and a reflection layer. The Ohmic-contact layer improves the Ohmic-contact characteristics between the second-type doping layer and the reflection layer without affecting the light emitting efficiency of the LED device and the flip-chip packaged LED device. The planarized buffer layer id disposed between the Ohmic-contact layer and the reflection layer for smoothening the Ohmic-contact layer and hence enabling the reflection layer to adhere to the planarized buffer layer smoothly. Thereby, the reflection layer can have the effect of mirror reflection and the scattering phenomenon on the reflected light can be reduced as well.
Abstract:
A light emitting device structure includes a light emitting device, a molding compound, a transparent substrate and a reflective layer. The light emitting device has an upper surface and a lower surface opposite to each other, a side surface connecting the upper and lower surfaces, and a first pad and a second pad located on the lower surface and separated from each other. The molding compound at least encapsulates the upper surface and the side surface, and exposes the first pad and the second pad. The transparent substrate is disposed above the upper surface of the light emitting device, and the molding compound is located between the transparent substrate and the light emitting device. The reflective layer directly covers the side surface of the light emitting device, wherein the molding compound encapsulates the reflective layer and exposes a bottom surface of the reflective layer.
Abstract:
A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
Abstract:
A package carrier is suitable for carrying at least one light emitting unit. The package carrier includes an annular shell and a transparent light guiding stage. The annular shell has a cavity. The transparent light guiding stage is disposed in the cavity of the annular shell. The light emitting unit is adapted to be disposed on the transparent light guiding stage, and a horizontal projection area of the transparent light guiding stage is greater than that of the light emitting unit. The light emitting unit emits a light beam to enter the transparent light guiding stage, and the light beam emits from a surface of the transparent light guiding stage relatively distant from the cavity.
Abstract:
A light emitting diode structure includes a substrate and a light emitting unit. The substrate has a protrusion portion and a light guiding portion. The protrusion portion and the light guiding portion have a seamless connection therebetween, and a horizontal projection area of the protrusion portion is smaller than that of the light guiding portion. The light emitting unit is disposed on the protrusion portion of the substrate. The light emitting unit is adapted to emit a light beam, and a portion of the light beam enters the light guiding portion from the protrusion portion and emits from an upper surface of the light guiding portion uncovered by the protrusion portion.