Abstract:
A plurality of through-hole vias connected to conductor layers is disposed with gaps left between these vias around opening parts disposed in the conductor layers in a printed board in which these conductor layers are disposed parallel to each other so as to sandwich a dielectric layer in between. Furthermore, through-hole vias used for excitation are disposed in the opening parts of the conductor layers and regions of the dielectric layer matching these opening parts in a non-contact manner with the conductor layers. When the complex dielectric constant is measured, a high-frequency power is applied to the through-hole vias, and the power loss between the through-hole vias and the conductor layers is measured by the S parameter method. As a result, the complex dielectric constant and the frequency dependency of this complex dielectric constant can be measured with a high precision in a frequency range extending from several gigahertzes to 20 GHz, and there is no electrical interference with other parts even when this resonator is mounted on a board.
Abstract:
A resonator/filter adapted for direct surface mounting to the surface of a printed circuit board. The resonator/filter comprises a block of dielectric material including at least one resonator through-hole extending therethrough and respective top, bottom and side surfaces defining respective regions of dielectric material covered with conductive material. The top block surface defines at least a first conductive region. A second conductive region on the bottom surface of the block defines an input/output contact which allows the filter to be mounted on the board with the bottom filter surface seated thereon, thus providing a direct ground contact between the board and the resonator through-hole for improved attenuation performance particularly at higher frequencies. A plurality of transmission line embodiments electrically interconnect the first and second conductive regions.
Abstract:
An ovenized oscillator package including at least a heater and a crystal package mounted on opposite sides of a circuit board. Vias extend through the body of the circuit board to transfer heat from the heater to the crystal package. Layers of thermally conductive material extend through the body of the circuit board and are in thermally coupled relationship with the vias for spreading heat throughout the circuit board and other elements mounted thereon.
Abstract:
A lead wire led-out type crystal oscillator of constant temperature type for high stability is disclosed, which includes a heat supply body that supplies heat to a crystal resonator from which a plurality of lead wires are led out, to maintain the temperature constant. The heat supply body includes a heat conducting plate which has through-holes for the lead wires and is mounted on the circuit board, and which faces, and is directly thermally joined to, the crystal resonator and a chip resistor for heating which is mounted on the circuit board adjacent to the heat conducting plate, and is thermally joined to the heat conducting plate.
Abstract:
A voltage controlled oscillator (VCO) assembly and module incorporating a ball grid array resonator as part of the tank circuit of the voltage controlled oscillator. The VCO module preferably incorporates at least an oscillator circuit, the tank circuit, and an output buffer stage circuit all defined by a plurality of interconnected electrical/electronic components including the ball grid array resonator which are mounted to a printed circuit board. In another embodiment, the oscillator assembly also includes a phase-locked loop circuit defined at least in part by an integrated circuit mounted to the printed circuit board.
Abstract:
An apparatus and method for manufacturing substrate elements includes providing a mother substrate, and forming a plurality of through-holes on first lines and second lines opposing each other across sections on the mother substrate. The sections define each of the substrate elements to be formed. The through-holes on the first lines are disposed alternately with respect to the through-holes on the second lines. Electrodes are also provided on the principal plane of the mother substrate and on the inner surfaces of the through-holes. Then, the mother substrate is cut along cut lines in the vertical and horizontal directions.
Abstract:
An apparatus and method for manufacturing substrate elements includes providing a mother substrate, and forming a plurality of through-holes on first lines and second lines opposing each other across sections on the mother substrate. The sections define each of the substrate elements to be formed. The through-holes on the first lines are disposed alternately with respect to the through-holes on the second lines. Electrodes are also provided on the principal plane of the mother substrate and on the inner surfaces of the through-holes. Then, the mother substrate is cut along cut lines in the vertical and horizontal directions.
Abstract:
A dielectric resonant component includes at least one dielectric multistage resonator including one dielectric block, a plurality of inner conductor formation holes formed in the one dielectric block, an inner conductor formed on an inner surface of each of the inner conductor formation holes, and an outer conductor covering a substantially entire outer surface of the one dielectric block, the dielectric multistage resonator constituting a plurality of dielectric resonators in the one dielectric block; and a mount substrate fixedly mounted on the dielectric multistage resonator, for transmitting a signal transmission between each of the dielectric resonators of the dielectric multistage resonator and an external circuit board, when the dielectric resonant component is mounted on the external circuit board. The dielectric multistage resonator further includes a pair of input/output electrodes, and the mount substrate includes a unit for connecting the input/output electrodes of the dielectric multistage resonator to a pair of input/output electrodes formed on the circuit board.
Abstract:
A system for packaging integrated circuit components including a ball grid array substrate with a plurality of solder balls coupled to the substrate. A semiconductor device is mounted on the substrate and electrically coupled to the solder balls. One or more terminals are coupled to the substrate and electrically coupled to said semiconductor device. A detachable module contains auxiliary component. The module comprises a body portion for containing the component and one or more electrical connectors for mating with respective terminals to hold the module to the substrate and to electrically couple the component with the semiconductor device. The terminals may also be connected to the solder balls such that a component may be optionally provided either on the circuit board or in the detachable module.
Abstract:
A microwave oscillator includes a substrate having a circuit pattern on the top surface, a thin copper foil covering the bottom surface, and a hole. An electronic component is mounted to the top surface of the substrate. A metal plate is attached to the bottom surface of the substrate thereby closing the bottom of the hole. A dielectric resonator is attached to the metal plate through the hole. Since the dielectric resonator is attached to the metal plate by soldering, the bond between the dielectric resonator and the metal plate is stronger and more stable than that achieved by using a conventional adhesive. This enhances the reliability against temperature changes; mechanical impact or humidity.