Abstract:
Analyte sensor connectors that connect analyte sensors, e.g., conductive members of analyte sensors, to other devices such as sensor electronics units, e.g., sensor control units, are provided. Also provided are systems that include analyte sensors, analyte sensor connectors, and analyte sensor electronics units, as well as methods of establishing and maintaining connections between analyte sensors and analyte sensor electronics units, and methods of analyte monitoring/detection. Also provided are methods of making analyte sensor connectors and systems that include analyte sensor connectors.
Abstract:
A process of making a heat radiating structure for high-power LED comprises: (1) providing a PCB board, a heat conducting plate and a heat radiating plate; (2) providing a first locating hole and a first fixation hole penetrating the PCB board, and welding a copper plate to one side of the PCB board; while soldering an electrode welding leg to the other side of the PCB board; (3) providing a second locating hole and a second fixation hole penetrating the heat conducting plate; (4) using a fixation column to pierce through both of the fixation holes for connecting together the PCB board and the heat conducting plate; (5) using a heat conducting column to pierce through both of the locating holes; (6) placing the integral piece of the heat conducting plate and the PCB board on a pressing equipment to adjust the height of the heat conducting column.
Abstract:
A circuit board with a simple structure is manufactured. A circuit board 19 has thereon a foil circuit 21 provided on a synthetic resin plate 20 formed by injection molding, made of a copper foil, and having a pattern different for circuit board 19. Anchor pins 20a projecting upward are provided on the resin plate 20 and passed through pinholes made in the foil circuit 21. The foil circuit 21 are positioned and secured to the resin plate 20. In a required portion of the resin plate 20, a terminal insertion hole 20c is provided, and receiving terminal 22 is secured to the required portion of the terminal insertion hole 20c and connected to the foil circuit 21.
Abstract:
ESD protection for a portable electronic device is provided by sandwiching a metal ground layer between prepreg (i.e., FR4 or other non-conductive PCB material) layers to form an ESD preventive PCB structure, where the metal ground layer is electrically connected to one or more of the integrated circuit (IC) components (e.g., at least one controller die, a non-volatile memory die, oscillator and passive components) that are mounted on the PCB by way of conductive via structures, and is accessible by way of one or more conductive anchor hole structures to external grounding structures. The one or more conductive anchor hole structures are positioned such that the metal ground layer is automatically electrically connected to the chassis ground of a host system when the portable device is coupled to a plug structure of the host system, e.g., by way of a metal connector jacket.
Abstract:
A sensor unit (1) has a metal plate (10), a resin molded portion (20) and an oil temperature sensor (2). Busbars (4) made of a metal are arranged in the resin molded portion (20). Since the busbars (4) are insert-molded while having the exposed ends (4A) thereof tightly held by a pair of forming dies, a distance between the exposed ends (4A) and the placing surface 10A is held constant. Further, gate marks (5D) of the oil temperature sensor (2) are accommodated in recesses (10B) of the placing surface (10) and engaging grooves (9) and engaging projections (26A) are engaged. Thus, the oil temperature sensor (2) can be held in a proper posture. Additionally, the oil temperature sensor (2) can be held on the placing surface (10A) by riveting the exposed end (4A) and a terminal (8) of the oil temperature sensor (2).
Abstract:
A plasma display device includes a plasma display panel (PDP), a chassis base on the PDP, a plurality of printed circuit board assemblies (PBAs) on the chassis base and electrically connected to the PDP, at least one of the PBAs including a single-sided board with a plurality of insert-holes for electrical connection, and at least one circuit element with a plurality of leads adapted to be respectively inserted into the plurality of insert-holes of the single-sided board, wherein the single-sided board includes a plurality of slots between the insert-holes.
Abstract:
A circuit board and a method of manufacturing the same are provided. The circuit board includes: a multilayer board in which a plurality of conductive layers with desired patterns formed therein, and a plurality of insulating layers are stacked; a plurality of through holes penetrating the multilayer board; cylindrical recesses each formed around a through hole corresponding thereto, having a diameter larger than that of the through hole, having a depth from an outermost surface of the insulating layer to a surface of the conductive layer for electrical connection, and partially exposing the surface of the predetermined conductive layer; and a plurality of conductive terminals fitted into the through holes.
Abstract:
A circuit board threadplate for connection of a component to a circuit board is provided wherein such threadplate may be mechanically mounted to a circuit board without the use of manual labor. Specifically, the threadplate is compatible with present Surface Mount Technology robotic placement machines. Such circuit board threadplate includes a hollow substantially cylindrical member forming an extruded neck having an elongated section and a substantially flat surface at a first end of the elongated section and a flange extending from a second end of the elongated section. The flange provides a substantially flat surface suitable for soldering onto a surface of a circuit board. Additionally, the threadplate includes a cylindrical cavity positioned inside the substantially cylindrical member, extending in a direction aligned with the substantially cylindrical member. The cylindrical cavity may have a thread pattern suitable for receiving a screw-type fastener. Finally, the threadplate includes an opening providing access to the cylindrical cavity.
Abstract:
A circuit board with a simple structure is manufactured. A circuit board 19 has thereon a foil circuit 21 provided on a synthetic resin plate 20 formed by injection molding, made of a copper foil, and having a pattern different for circuit board 19. Anchor pins 20a projecting upward are provided on the resin plate 20 and passed through pinholes made in the foil circuit 21. The foil circuit 21 are positioned and secured to the resin plate 20. In a required portion of the resin plate 20, a terminal insertion hole 20c is provided, and receiving terminal 22 is secured to the required portion of the terminal insertion hole 20c and connected to the foil circuit 21.
Abstract:
A circuit device and a method for providing an interface between a circuit device comprised of a porcelain enameled metal substrate and an external electrical conductor such as a wire or a lead. An aperture is formed in the substrate at the location where the connection is desired. An eyelet is then placed in the aperture. Crimping or other means are used to form a mechanical connection to the substrate and causes the eyelet to be retained in the aperture. The wire or lead of an electronic component is then inserted into the eyelet. The wire or lead is then soldered to the eyelet providing a joint of high mechanical strength.