Abstract:
A wet coating composition useful for coating a cellulosic fiber-based substrate is provided. The composition includes two aqueous emulsions. The first emulsion includes an oxidized paraffin/polyethylene wax and the second emulsion includes an ethylene/acrylic acid copolymer wax, ethylene/acrylic amide copolymer wax, ethylene/acrylic acid/acrylic amide copolymer wax or a mixture thereof. The oxidized paraffin/polyethylene wax has a surface energy less than or equal to 2 m N/m being substantially dispersive energy. The wet coating composition when dried forms a coating having a surface energy ranging from 20 to 60 m N/m being the sum of dispersive and polar energies. A process for treating a cellulosic fiber-based substrate with the wet coating composition, a substrate coated and articles including the coated substrate are also described. The process involves a heating step to allow migration of the coating towards a core of the cellulosic fiber-based substrate.
Abstract:
A method of treating a sensor array including a plurality of sensors and an isolation structure, where a sensor of the plurality of sensors has a sensor pad exposed at a surface of the sensor array and the isolation structure is disposed between the sensor pad and sensor pads of other sensors of the plurality of sensors, comprises exposing the sensor pad and the isolation structure to a non-aqueous organo-silicon solution including an organo-silicon compound and a first non-aqueous carrier; applying an acid solution including an organic acid and a second non-aqueous carrier to the sensor pad; and rinsing the acid solution from the sensor pad and the isolation structure.
Abstract:
The present invention relates to a coating composition that provides improved scratch and stain resistance. The coating composition includes a curable film-forming resin having at least two multi-functional (meth)acrylates and a plurality of particles dispersed within the resin, said particles comprising (i) inorganic nanoparticles and (ii) wear resistant mineral particles. The wear resistant mineral particles have an average particle size of greater than 3.5 microns.
Abstract:
A diblock copolymer system that self-assembles at very low molecular weights to form very small features is described. One polymer in the block copolymer contains silicon, and the other polymer is a polylactide. The block copolymer may be synthesized by a combination of anionic and ring opening polymerization reactions. This block copolymer may form nanoporous materials that can be used as etch masks in lithographic patterning.
Abstract:
An object of the present invention is to provide a method of immobilizing the biologically active substance which has an excellent capability of immobilizing a target biologically active substance, and exhibits low nonspecific adsorption of the biologically active substance to provide a high S/N ratio, without using a functional group for fixing the biologically active substance and without having a process of inactivating the functional group for fixing the biologically active substance after immobilizing the biologically active substance. The above object is achieved by a method of immobilizing a biologically active substance comprising the step of: bringing a solution into contact with a compound-side surface of an immobilizing substrate to immobilize the biologically active substance on a surface of the immobilizing substrate, the solution being prepared by dissolving the biologically active substance in a phosphate buffer having a phosphate concentration of 0.1 M or more, and the immobilizing substrate comprising a substrate and a compound containing a hydrophilic group inhibiting nonspecific adsorption on a surface of the substrate.
Abstract:
Coating a metallic surface with at least one of a pretreatment composition prior to organic coating, with a passivation composition without intent for subsequent organic coating, with a pretreatment primer composition, with a primer composition, with a paint composition and with an electrocoating composition, wherein the coating composition includes particles on a base of at least one layered double hydroxide (LDH) phase characterized by the general formula [M2+(1±0.5)−x(M3+,M4+)x(OH)2±0.75]An−x/n.mH2O.
Abstract:
An apparatus and method provides a drug layer formed on a surface region of a medical device, the drug layer comprised of a drug deposition and a carbonized or densified layer formed from the drug deposition by irradiation on an outer surface of the drug deposition, wherein the carbonized or densified layer does not penetrate through the drug deposition and is adapted to release drug from the drug deposition at a predetermined rate.
Abstract:
Provided herein are exemplary embodiments for phosphor screen including a substrate, a stimulable phosphor layer disposed over the substrate, the stimulable phosphor layer including a stimulable phosphor material, and an adhesive layer disposed by solvent coating over the stimulable phosphor layer, the adhesive layer including solvent-coatable thermally-sensitive elastomers, where the adhesive layer has a dust adhesion of ≦1 dust particles/sq.in.
Abstract:
The present invention relates to a coating composition that provides improved scratch and stain resistance. The coating composition includes a curable film-forming resin having at least two multi-functional (meth)acrylates and a plurality of particles dispersed within the resin, said particles comprising (i) inorganic nanoparticles and (ii) wear resistant mineral particles. The wear resistant mineral particles have an average particle size of greater than 3.5 microns.
Abstract:
A support structure includes a first layer of foam material and a second layer of elastomeric gel material. In accordance with one example, the first layer of foam material includes a first side with a plurality of protrusions and a plurality of channels with the second layer of elastomeric gel material disposed within the plurality of channels. In accordance with another example, the first layer of foam material includes a first side with a plurality of protrusions and a network of channels surrounding at least one of the plurality of protrusions with the second layer of elastomeric gel material disposed within the network of channels. A third layer extends over the first support surface of the protrusions and the second support surface of the second layer of gel material. In accordance with yet another example, the first layer of foam material includes a first side with a plurality of protrusions extending through corresponding Shapertures of the second layer. In accordance with further examples, methods of making a support structure with a first layer of foam material and a second layer of elastomeric gel material are provided.